x എന്നതിനായി സോൾവ് ചെയ്യുക
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=\frac{1}{3}\approx 0.333333333
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2,-1,1,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x^{2}-1,x^{4}-5x^{2}+4,4-x^{2} എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
4 കൊണ്ട് x^{2}-4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
-1 ലഭ്യമാക്കാൻ -16, 15 എന്നിവ ചേർക്കുക.
4x^{2}-1+7x=-2x^{2}+2
2 കൊണ്ട് -x^{2}+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}-1+7x+2x^{2}=2
2x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
6x^{2}-1+7x=2
6x^{2} നേടാൻ 4x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
6x^{2}-1+7x-2=0
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
6x^{2}-3+7x=0
-3 നേടാൻ -1 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
6x^{2}+7x-3=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=7 ab=6\left(-3\right)=-18
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 6x^{2}+ax+bx-3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,18 -2,9 -3,6
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -18 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+18=17 -2+9=7 -3+6=3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-2 b=9
സൊല്യൂഷൻ എന്നത് 7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(6x^{2}-2x\right)+\left(9x-3\right)
6x^{2}+7x-3 എന്നത് \left(6x^{2}-2x\right)+\left(9x-3\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(3x-1\right)+3\left(3x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3x-1\right)\left(2x+3\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{1}{3} x=-\frac{3}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 3x-1=0, 2x+3=0 എന്നിവ സോൾവ് ചെയ്യുക.
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2,-1,1,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x^{2}-1,x^{4}-5x^{2}+4,4-x^{2} എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
4 കൊണ്ട് x^{2}-4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
-1 ലഭ്യമാക്കാൻ -16, 15 എന്നിവ ചേർക്കുക.
4x^{2}-1+7x=-2x^{2}+2
2 കൊണ്ട് -x^{2}+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}-1+7x+2x^{2}=2
2x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
6x^{2}-1+7x=2
6x^{2} നേടാൻ 4x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
6x^{2}-1+7x-2=0
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
6x^{2}-3+7x=0
-3 നേടാൻ -1 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
6x^{2}+7x-3=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-3\right)}}{2\times 6}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 6 എന്നതും b എന്നതിനായി 7 എന്നതും c എന്നതിനായി -3 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-7±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-7±\sqrt{49-24\left(-3\right)}}{2\times 6}
-4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-7±\sqrt{49+72}}{2\times 6}
-24, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-7±\sqrt{121}}{2\times 6}
49, 72 എന്നതിൽ ചേർക്കുക.
x=\frac{-7±11}{2\times 6}
121 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-7±11}{12}
2, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{4}{12}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-7±11}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7, 11 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{3}
4 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{18}{12}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-7±11}{12} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=-\frac{3}{2}
6 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-18}{12} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=\frac{1}{3} x=-\frac{3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
\left(x^{2}-4\right)\times 4+15+7x=\left(-x^{2}+1\right)\times 2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2,-1,1,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x^{2}-1,x^{4}-5x^{2}+4,4-x^{2} എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
4x^{2}-16+15+7x=\left(-x^{2}+1\right)\times 2
4 കൊണ്ട് x^{2}-4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}-1+7x=\left(-x^{2}+1\right)\times 2
-1 ലഭ്യമാക്കാൻ -16, 15 എന്നിവ ചേർക്കുക.
4x^{2}-1+7x=-2x^{2}+2
2 കൊണ്ട് -x^{2}+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x^{2}-1+7x+2x^{2}=2
2x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
6x^{2}-1+7x=2
6x^{2} നേടാൻ 4x^{2}, 2x^{2} എന്നിവ യോജിപ്പിക്കുക.
6x^{2}+7x=2+1
1 ഇരു വശങ്ങളിലും ചേർക്കുക.
6x^{2}+7x=3
3 ലഭ്യമാക്കാൻ 2, 1 എന്നിവ ചേർക്കുക.
\frac{6x^{2}+7x}{6}=\frac{3}{6}
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{7}{6}x=\frac{3}{6}
6 കൊണ്ട് ഹരിക്കുന്നത്, 6 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{7}{6}x=\frac{1}{2}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{3}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{1}{2}+\left(\frac{7}{12}\right)^{2}
\frac{7}{12} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{7}{6}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{7}{12} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{1}{2}+\frac{49}{144}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{7}{12} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{121}{144}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{2} എന്നത് \frac{49}{144} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{7}{12}\right)^{2}=\frac{121}{144}
x^{2}+\frac{7}{6}x+\frac{49}{144} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{7}{12}=\frac{11}{12} x+\frac{7}{12}=-\frac{11}{12}
ലഘൂകരിക്കുക.
x=\frac{1}{3} x=-\frac{3}{2}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{12} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}