മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{42}{11}\approx 3.818181818
ഘടകം
\frac{2 \cdot 3 \cdot 7}{11} = 3\frac{9}{11} = 3.8181818181818183
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
4+\sqrt{5} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{4+\sqrt{5}}{4-\sqrt{5}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
4 സ്ക്വയർ ചെയ്യുക. \sqrt{5} സ്ക്വയർ ചെയ്യുക.
\frac{\left(4+\sqrt{5}\right)\left(4+\sqrt{5}\right)}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
11 നേടാൻ 16 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
\frac{\left(4+\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\left(4+\sqrt{5}\right)^{2} നേടാൻ 4+\sqrt{5}, 4+\sqrt{5} എന്നിവ ഗുണിക്കുക.
\frac{16+8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\left(4+\sqrt{5}\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
\frac{16+8\sqrt{5}+5}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
\sqrt{5} എന്നതിന്റെ വർഗ്ഗം 5 ആണ്.
\frac{21+8\sqrt{5}}{11}+\frac{4-\sqrt{5}}{4+\sqrt{5}}
21 ലഭ്യമാക്കാൻ 16, 5 എന്നിവ ചേർക്കുക.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
4-\sqrt{5} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{4-\sqrt{5}}{4+\sqrt{5}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
4 സ്ക്വയർ ചെയ്യുക. \sqrt{5} സ്ക്വയർ ചെയ്യുക.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
11 നേടാൻ 16 എന്നതിൽ നിന്ന് 5 കുറയ്ക്കുക.
\frac{21+8\sqrt{5}}{11}+\frac{\left(4-\sqrt{5}\right)^{2}}{11}
\left(4-\sqrt{5}\right)^{2} നേടാൻ 4-\sqrt{5}, 4-\sqrt{5} എന്നിവ ഗുണിക്കുക.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+\left(\sqrt{5}\right)^{2}}{11}
\left(4-\sqrt{5}\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
\frac{21+8\sqrt{5}}{11}+\frac{16-8\sqrt{5}+5}{11}
\sqrt{5} എന്നതിന്റെ വർഗ്ഗം 5 ആണ്.
\frac{21+8\sqrt{5}}{11}+\frac{21-8\sqrt{5}}{11}
21 ലഭ്യമാക്കാൻ 16, 5 എന്നിവ ചേർക്കുക.
\frac{21+8\sqrt{5}+21-8\sqrt{5}}{11}
\frac{21+8\sqrt{5}}{11}, \frac{21-8\sqrt{5}}{11} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{42}{11}
21+8\sqrt{5}+21-8\sqrt{5} എന്നതിൽ കണക്കുകൂട്ടലുകൾ നടത്തുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}