മൂല്യനിർണ്ണയം ചെയ്യുക
-\frac{5y^{2}}{x^{3}}
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
\frac{15y^{2}}{x^{4}}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{30^{1}x^{4}y^{3}}{\left(-6\right)^{1}x^{7}y^{1}}
ഗണനപ്രയോഗം ലഘൂകരിക്കാൻ എക്സ്പോണന്റുകളുടെ നിയമങ്ങൾ ഉപയോഗിക്കുക.
\frac{30^{1}}{\left(-6\right)^{1}}x^{4-7}y^{3-1}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{30^{1}}{\left(-6\right)^{1}}x^{-3}y^{3-1}
4 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
\frac{30^{1}}{\left(-6\right)^{1}}\times \frac{1}{x^{3}}y^{2}
3 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
-5\times \frac{1}{x^{3}}y^{2}
-6 കൊണ്ട് 30 എന്നതിനെ ഹരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{30y^{3}}{-6y}x^{4-7})
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-5y^{2}\right)x^{-3})
ഗണിതം ചെയ്യുക.
-3\left(-5y^{2}\right)x^{-3-1}
ഒരു പോളിനോമിലിന്റെ അനുമാനം അതിന്റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്റെ അനുമാനം nax^{n-1} ആണ്.
15y^{2}x^{-4}
ഗണിതം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}