പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -5,-2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+5,x+2 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x+2\right)\left(x+5\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
3x-7 കൊണ്ട് x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-x-14=x^{2}+2x-15
x-3 കൊണ്ട് x+5 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-x-14-x^{2}=2x-15
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
2x^{2}-x-14=2x-15
2x^{2} നേടാൻ 3x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-x-14-2x=-15
ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
2x^{2}-3x-14=-15
-3x നേടാൻ -x, -2x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-3x-14+15=0
15 ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-3x+1=0
1 ലഭ്യമാക്കാൻ -14, 15 എന്നിവ ചേർക്കുക.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി 1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2\times 2}
-3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{1}}{2\times 2}
9, -8 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-3\right)±1}{2\times 2}
1 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{3±1}{2\times 2}
-3 എന്നതിന്‍റെ വിപരീതം 3 ആണ്.
x=\frac{3±1}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{4}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±1}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 1 എന്നതിൽ ചേർക്കുക.
x=1
4 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{3±1}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=1 x=\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -5,-2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+5,x+2 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x+2\right)\left(x+5\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
3x-7 കൊണ്ട് x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-x-14=x^{2}+2x-15
x-3 കൊണ്ട് x+5 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-x-14-x^{2}=2x-15
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
2x^{2}-x-14=2x-15
2x^{2} നേടാൻ 3x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-x-14-2x=-15
ഇരുവശങ്ങളിൽ നിന്നും 2x കുറയ്ക്കുക.
2x^{2}-3x-14=-15
-3x നേടാൻ -x, -2x എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-3x=-15+14
14 ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-3x=-1
-1 ലഭ്യമാക്കാൻ -15, 14 എന്നിവ ചേർക്കുക.
\frac{2x^{2}-3x}{2}=-\frac{1}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{3}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{1}{2} എന്നത് \frac{9}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
ലഘൂകരിക്കുക.
x=1 x=\frac{1}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{4} ചേർക്കുക.