x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3x-\left(-\left(1+x\right)x\right)=x-2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x^{2}-x-2,2-x,x+1 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x-\left(-1-x\right)x=x-2
1+x കൊണ്ട് -1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-\left(-x-x^{2}\right)=x-2
x കൊണ്ട് -1-x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+x+x^{2}=x-2
-x-x^{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
4x+x^{2}=x-2
4x നേടാൻ 3x, x എന്നിവ യോജിപ്പിക്കുക.
4x+x^{2}-x=-2
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x+x^{2}=-2
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
3x+x^{2}+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+3x+2=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=3 ab=2
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}+3x+2 ഫാക്ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=1 b=2
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x+1\right)\left(x+2\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=-1 x=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x+1=0, x+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
x=-2
x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല.
3x-\left(-\left(1+x\right)x\right)=x-2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x^{2}-x-2,2-x,x+1 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x-\left(-1-x\right)x=x-2
1+x കൊണ്ട് -1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-\left(-x-x^{2}\right)=x-2
x കൊണ്ട് -1-x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+x+x^{2}=x-2
-x-x^{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
4x+x^{2}=x-2
4x നേടാൻ 3x, x എന്നിവ യോജിപ്പിക്കുക.
4x+x^{2}-x=-2
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x+x^{2}=-2
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
3x+x^{2}+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+3x+2=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=3 ab=1\times 2=2
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+2 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=1 b=2
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(x^{2}+x\right)+\left(2x+2\right)
x^{2}+3x+2 എന്നത് \left(x^{2}+x\right)+\left(2x+2\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x+1\right)+2\left(x+1\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x+1\right)\left(x+2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x+1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=-1 x=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x+1=0, x+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
x=-2
x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല.
3x-\left(-\left(1+x\right)x\right)=x-2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x^{2}-x-2,2-x,x+1 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x-\left(-1-x\right)x=x-2
1+x കൊണ്ട് -1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-\left(-x-x^{2}\right)=x-2
x കൊണ്ട് -1-x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+x+x^{2}=x-2
-x-x^{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
4x+x^{2}=x-2
4x നേടാൻ 3x, x എന്നിവ യോജിപ്പിക്കുക.
4x+x^{2}-x=-2
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x+x^{2}=-2
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
3x+x^{2}+2=0
2 ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+3x+2=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-3±\sqrt{3^{2}-4\times 2}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 3 എന്നതും c എന്നതിനായി 2 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-3±\sqrt{9-4\times 2}}{2}
3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-3±\sqrt{9-8}}{2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3±\sqrt{1}}{2}
9, -8 എന്നതിൽ ചേർക്കുക.
x=\frac{-3±1}{2}
1 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=-\frac{2}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-3±1}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3, 1 എന്നതിൽ ചേർക്കുക.
x=-1
2 കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
x=-\frac{4}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-3±1}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
x=-2
2 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
x=-1 x=-2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x=-2
x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല.
3x-\left(-\left(1+x\right)x\right)=x-2
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x^{2}-x-2,2-x,x+1 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
3x-\left(-1-x\right)x=x-2
1+x കൊണ്ട് -1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-\left(-x-x^{2}\right)=x-2
x കൊണ്ട് -1-x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x+x+x^{2}=x-2
-x-x^{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
4x+x^{2}=x-2
4x നേടാൻ 3x, x എന്നിവ യോജിപ്പിക്കുക.
4x+x^{2}-x=-2
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
3x+x^{2}=-2
3x നേടാൻ 4x, -x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+3x=-2
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ 3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{3}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+3x+\frac{9}{4}=-2+\frac{9}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+3x+\frac{9}{4}=\frac{1}{4}
-2, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{4}
x^{2}+3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{3}{2}=\frac{1}{2} x+\frac{3}{2}=-\frac{1}{2}
ലഘൂകരിക്കുക.
x=-1 x=-2
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{2} കുറയ്ക്കുക.
x=-2
x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}