മൂല്യനിർണ്ണയം ചെയ്യുക
-\frac{2m^{2}-14m-3}{\left(7-m\right)^{2}}
m എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
\frac{2\left(52-7m\right)}{\left(7-m\right)\left(m-7\right)^{2}}
ക്വിസ്
Polynomial
ഇതിന് സമാനമായ 5 ചോദ്യങ്ങൾ:
\frac { 3 } { m ^ { 2 } - 14 m + 49 } + \frac { 2 m } { 7 - m }
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{3}{\left(m-7\right)^{2}}+\frac{2m}{7-m}
m^{2}-14m+49 ഘടകക്രിയ ചെയ്യുക.
\frac{3}{\left(m-7\right)^{2}}+\frac{2m\left(-1\right)\left(m-7\right)}{\left(m-7\right)^{2}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. \left(m-7\right)^{2}, 7-m എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(m-7\right)^{2} ആണ്. \frac{2m}{7-m}, \frac{-\left(m-7\right)}{-\left(m-7\right)} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{3+2m\left(-1\right)\left(m-7\right)}{\left(m-7\right)^{2}}
\frac{3}{\left(m-7\right)^{2}}, \frac{2m\left(-1\right)\left(m-7\right)}{\left(m-7\right)^{2}} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{3-2m^{2}+14m}{\left(m-7\right)^{2}}
3+2m\left(-1\right)\left(m-7\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{3-2m^{2}+14m}{m^{2}-14m+49}
\left(m-7\right)^{2} വികസിപ്പിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}