x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-\frac{1}{2}=-0.5
x=2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
6x=4x^{2}+16-20
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. 8,2\times 2x\times 4 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 16x ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6x=4x^{2}-4
-4 നേടാൻ 16 എന്നതിൽ നിന്ന് 20 കുറയ്ക്കുക.
6x-4x^{2}=-4
ഇരുവശങ്ങളിൽ നിന്നും 4x^{2} കുറയ്ക്കുക.
6x-4x^{2}+4=0
4 ഇരു വശങ്ങളിലും ചേർക്കുക.
3x-2x^{2}+2=0
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
-2x^{2}+3x+2=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=3 ab=-2\times 2=-4
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -2x^{2}+ax+bx+2 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,4 -2,2
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -4 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+4=3 -2+2=0
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=4 b=-1
സൊല്യൂഷൻ എന്നത് 3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-2x^{2}+4x\right)+\left(-x+2\right)
-2x^{2}+3x+2 എന്നത് \left(-2x^{2}+4x\right)+\left(-x+2\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(-x+2\right)-x+2
-2x^{2}+4x എന്നതിൽ 2x ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-x+2\right)\left(2x+1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -x+2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=2 x=-\frac{1}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ -x+2=0, 2x+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
6x=4x^{2}+16-20
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. 8,2\times 2x\times 4 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 16x ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6x=4x^{2}-4
-4 നേടാൻ 16 എന്നതിൽ നിന്ന് 20 കുറയ്ക്കുക.
6x-4x^{2}=-4
ഇരുവശങ്ങളിൽ നിന്നും 4x^{2} കുറയ്ക്കുക.
6x-4x^{2}+4=0
4 ഇരു വശങ്ങളിലും ചേർക്കുക.
-4x^{2}+6x+4=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-6±\sqrt{6^{2}-4\left(-4\right)\times 4}}{2\left(-4\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -4 എന്നതും b എന്നതിനായി 6 എന്നതും c എന്നതിനായി 4 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-6±\sqrt{36-4\left(-4\right)\times 4}}{2\left(-4\right)}
6 സ്ക്വയർ ചെയ്യുക.
x=\frac{-6±\sqrt{36+16\times 4}}{2\left(-4\right)}
-4, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-6±\sqrt{36+64}}{2\left(-4\right)}
16, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-6±\sqrt{100}}{2\left(-4\right)}
36, 64 എന്നതിൽ ചേർക്കുക.
x=\frac{-6±10}{2\left(-4\right)}
100 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-6±10}{-8}
2, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{4}{-8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-6±10}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6, 10 എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{2}
4 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{-8} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{16}{-8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-6±10}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -6 എന്നതിൽ നിന്ന് 10 വ്യവകലനം ചെയ്യുക.
x=2
-8 കൊണ്ട് -16 എന്നതിനെ ഹരിക്കുക.
x=-\frac{1}{2} x=2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
6x=4x^{2}+16-20
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. 8,2\times 2x\times 4 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 16x ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6x=4x^{2}-4
-4 നേടാൻ 16 എന്നതിൽ നിന്ന് 20 കുറയ്ക്കുക.
6x-4x^{2}=-4
ഇരുവശങ്ങളിൽ നിന്നും 4x^{2} കുറയ്ക്കുക.
-4x^{2}+6x=-4
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-4x^{2}+6x}{-4}=-\frac{4}{-4}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{6}{-4}x=-\frac{4}{-4}
-4 കൊണ്ട് ഹരിക്കുന്നത്, -4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{3}{2}x=-\frac{4}{-4}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{-4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}-\frac{3}{2}x=1
-4 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=1+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{3}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{3}{4} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
1, \frac{9}{16} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{3}{4}\right)^{2}=\frac{25}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{4}=\frac{5}{4} x-\frac{3}{4}=-\frac{5}{4}
ലഘൂകരിക്കുക.
x=2 x=-\frac{1}{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{3}{4} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}