x എന്നതിനായി സോൾവ് ചെയ്യുക
x=5
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,4 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x-4,x+1,\left(x-4\right)\left(x+1\right) എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-4\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
2x-7 കൊണ്ട് x+1 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
x+2 കൊണ്ട് x-4 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-5x-7-x^{2}+2x+8=x+6
x^{2}-2x-8 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
x^{2}-5x-7+2x+8=x+6
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}-3x-7+8=x+6
-3x നേടാൻ -5x, 2x എന്നിവ യോജിപ്പിക്കുക.
x^{2}-3x+1=x+6
1 ലഭ്യമാക്കാൻ -7, 8 എന്നിവ ചേർക്കുക.
x^{2}-3x+1-x=6
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
x^{2}-4x+1=6
-4x നേടാൻ -3x, -x എന്നിവ യോജിപ്പിക്കുക.
x^{2}-4x+1-6=0
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
x^{2}-4x-5=0
-5 നേടാൻ 1 എന്നതിൽ നിന്ന് 6 കുറയ്ക്കുക.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -4 എന്നതും c എന്നതിനായി -5 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
-4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
-4, -5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
16, 20 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-4\right)±6}{2}
36 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4±6}{2}
-4 എന്നതിന്റെ വിപരീതം 4 ആണ്.
x=\frac{10}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{4±6}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4, 6 എന്നതിൽ ചേർക്കുക.
x=5
2 കൊണ്ട് 10 എന്നതിനെ ഹരിക്കുക.
x=-\frac{2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{4±6}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=-1
2 കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
x=5 x=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x=5
x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല.
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,4 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x-4,x+1,\left(x-4\right)\left(x+1\right) എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-4\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
2x-7 കൊണ്ട് x+1 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
x+2 കൊണ്ട് x-4 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2x^{2}-5x-7-x^{2}+2x+8=x+6
x^{2}-2x-8 എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
x^{2}-5x-7+2x+8=x+6
x^{2} നേടാൻ 2x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
x^{2}-3x-7+8=x+6
-3x നേടാൻ -5x, 2x എന്നിവ യോജിപ്പിക്കുക.
x^{2}-3x+1=x+6
1 ലഭ്യമാക്കാൻ -7, 8 എന്നിവ ചേർക്കുക.
x^{2}-3x+1-x=6
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
x^{2}-4x+1=6
-4x നേടാൻ -3x, -x എന്നിവ യോജിപ്പിക്കുക.
x^{2}-4x=6-1
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
x^{2}-4x=5
5 നേടാൻ 6 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
-2 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -4-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -2 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-4x+4=5+4
-2 സ്ക്വയർ ചെയ്യുക.
x^{2}-4x+4=9
5, 4 എന്നതിൽ ചേർക്കുക.
\left(x-2\right)^{2}=9
x^{2}-4x+4 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-2=3 x-2=-3
ലഘൂകരിക്കുക.
x=5 x=-1
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 2 ചേർക്കുക.
x=5
x എന്ന വേരിയബിൾ -1 എന്നതിന് തുല്യമാക്കാനാകില്ല.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}