പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{2x^{2}\left(-3\right)-6x^{2}}{-12x}
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
\frac{-6x^{2}-6x^{2}}{-12x}
-6 നേടാൻ 2, -3 എന്നിവ ഗുണിക്കുക.
\frac{-12x^{2}}{-12x}
-12x^{2} നേടാൻ -6x^{2}, -6x^{2} എന്നിവ യോജിപ്പിക്കുക.
x
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും -12x ഒഴിവാക്കുക.
\frac{-12x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\left(-6x\right)x^{1}-6x^{2})-\left(\left(-6x\right)x^{1}-6x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(-12x^{1})}{\left(-12x^{1}\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{-12x^{1}\left(\left(-6x\right)x^{1-1}+2\left(-6\right)x^{2-1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{1-1}}{\left(-12x^{1}\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{-12x^{1}\left(\left(-6x\right)x^{0}-12x^{1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
-12x^{1}, \left(-6x\right)x^{0}-12x^{1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}\left(-12\right)x^{0}-6x^{2}\left(-12\right)x^{0}\right)}{\left(-12x^{1}\right)^{2}}
\left(-6x\right)x^{1}-6x^{2}, -12x^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{-12\left(-6x\right)x^{1}-12\left(-12\right)x^{1+1}-\left(\left(-6x\right)\left(-12\right)x^{1}-6\left(-12\right)x^{2}\right)}{\left(-12x^{1}\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{72xx^{1}+144x^{2}-\left(72xx^{1}+72x^{2}\right)}{\left(-12x^{1}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{72x^{2}}{\left(-12x^{1}\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{72x^{2}}{\left(-12x\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.