പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{2x}{1+\frac{1}{\frac{1-x}{1-x}+\frac{x}{1-x}}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 1, \frac{1-x}{1-x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2x}{1+\frac{1}{\frac{1-x+x}{1-x}}}
\frac{1-x}{1-x}, \frac{x}{1-x} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{2x}{1+\frac{1}{\frac{1}{1-x}}}
1-x+x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{2x}{1+1-x}
\frac{1}{1-x} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് 1 ഗുണിക്കുന്നതിലൂടെ \frac{1}{1-x} കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
\frac{2x}{2-x}
2 ലഭ്യമാക്കാൻ 1, 1 എന്നിവ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+\frac{1}{\frac{1-x}{1-x}+\frac{x}{1-x}}})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 1, \frac{1-x}{1-x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+\frac{1}{\frac{1-x+x}{1-x}}})
\frac{1-x}{1-x}, \frac{x}{1-x} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+\frac{1}{\frac{1}{1-x}}})
1-x+x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{1+1-x})
\frac{1}{1-x} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് 1 ഗുണിക്കുന്നതിലൂടെ \frac{1}{1-x} കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{2-x})
2 ലഭ്യമാക്കാൻ 1, 1 എന്നിവ ചേർക്കുക.
\frac{\left(-x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+2)}{\left(-x^{1}+2\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{\left(-x^{1}+2\right)\times 2x^{1-1}-2x^{1}\left(-1\right)x^{1-1}}{\left(-x^{1}+2\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(-x^{1}+2\right)\times 2x^{0}-2x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+2\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{-x^{1}\times 2x^{0}+2\times 2x^{0}-2x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+2\right)^{2}}
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് വികസിപ്പിക്കുക.
\frac{-2x^{1}+2\times 2x^{0}-2\left(-1\right)x^{1}}{\left(-x^{1}+2\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{-2x^{1}+4x^{0}-\left(-2x^{1}\right)}{\left(-x^{1}+2\right)^{2}}
ഗണിതം ചെയ്യുക.
\frac{\left(-2-\left(-2\right)\right)x^{1}+4x^{0}}{\left(-x^{1}+2\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{4x^{0}}{\left(-x^{1}+2\right)^{2}}
-2 എന്നതിൽ നിന്ന് -2 വ്യവകലനം ചെയ്യുക.
\frac{4x^{0}}{\left(-x+2\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.
\frac{4\times 1}{\left(-x+2\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.
\frac{4}{\left(-x+2\right)^{2}}
ഏതു പദത്തിനും t, t\times 1=t, 1t=t.