പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x+1=4xx
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
2x+1=4x^{2}
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
2x+1-4x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും 4x^{2} കുറയ്ക്കുക.
-4x^{2}+2x+1=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2\left(-4\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -4 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി 1 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2\left(-4\right)}
2 സ്ക്വയർ ചെയ്യുക.
x=\frac{-2±\sqrt{4+16}}{2\left(-4\right)}
-4, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{20}}{2\left(-4\right)}
4, 16 എന്നതിൽ ചേർക്കുക.
x=\frac{-2±2\sqrt{5}}{2\left(-4\right)}
20 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-2±2\sqrt{5}}{-8}
2, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2\sqrt{5}-2}{-8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{5}}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 2\sqrt{5} എന്നതിൽ ചേർക്കുക.
x=\frac{1-\sqrt{5}}{4}
-8 കൊണ്ട് -2+2\sqrt{5} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{5}-2}{-8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{5}}{-8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 2\sqrt{5} വ്യവകലനം ചെയ്യുക.
x=\frac{\sqrt{5}+1}{4}
-8 കൊണ്ട് -2-2\sqrt{5} എന്നതിനെ ഹരിക്കുക.
x=\frac{1-\sqrt{5}}{4} x=\frac{\sqrt{5}+1}{4}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x+1=4xx
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
2x+1=4x^{2}
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
2x+1-4x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും 4x^{2} കുറയ്ക്കുക.
2x-4x^{2}=-1
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
-4x^{2}+2x=-1
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-4x^{2}+2x}{-4}=-\frac{1}{-4}
ഇരുവശങ്ങളെയും -4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{2}{-4}x=-\frac{1}{-4}
-4 കൊണ്ട് ഹരിക്കുന്നത്, -4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{1}{2}x=-\frac{1}{-4}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{-4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{1}{2}x=\frac{1}{4}
-4 കൊണ്ട് -1 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{1}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{4}+\frac{1}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{4} എന്നത് \frac{1}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{4}\right)^{2}=\frac{5}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{4}=\frac{\sqrt{5}}{4} x-\frac{1}{4}=-\frac{\sqrt{5}}{4}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{5}+1}{4} x=\frac{1-\sqrt{5}}{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{4} ചേർക്കുക.