പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{2\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}+\frac{3\left(x-6\right)}{\left(x-6\right)\left(x+5\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x-6, x+5 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-6\right)\left(x+5\right) ആണ്. \frac{2}{x-6}, \frac{x+5}{x+5} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{3}{x+5}, \frac{x-6}{x-6} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2\left(x+5\right)+3\left(x-6\right)}{\left(x-6\right)\left(x+5\right)}
\frac{2\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}, \frac{3\left(x-6\right)}{\left(x-6\right)\left(x+5\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{2x+10+3x-18}{\left(x-6\right)\left(x+5\right)}
2\left(x+5\right)+3\left(x-6\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{5x-8}{\left(x-6\right)\left(x+5\right)}
2x+10+3x-18 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{5x-8}{x^{2}-x-30}
\left(x-6\right)\left(x+5\right) വികസിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}+\frac{3\left(x-6\right)}{\left(x-6\right)\left(x+5\right)})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x-6, x+5 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം \left(x-6\right)\left(x+5\right) ആണ്. \frac{2}{x-6}, \frac{x+5}{x+5} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{3}{x+5}, \frac{x-6}{x-6} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+5\right)+3\left(x-6\right)}{\left(x-6\right)\left(x+5\right)})
\frac{2\left(x+5\right)}{\left(x-6\right)\left(x+5\right)}, \frac{3\left(x-6\right)}{\left(x-6\right)\left(x+5\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+10+3x-18}{\left(x-6\right)\left(x+5\right)})
2\left(x+5\right)+3\left(x-6\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-8}{\left(x-6\right)\left(x+5\right)})
2x+10+3x-18 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-8}{x^{2}+5x-6x-30})
x-6 എന്നതിന്‍റെ ഓരോ പദത്തെയും x+5 എന്നതിന്‍റെ ഓരോ പദം ഉപയോഗിച്ച് ഗുണിക്കുന്നതിലൂടെ ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത പ്രയോഗിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-8}{x^{2}-x-30})
-x നേടാൻ 5x, -6x എന്നിവ യോജിപ്പിക്കുക.
\frac{\left(x^{2}-x^{1}-30\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}-8)-\left(5x^{1}-8\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-30)}{\left(x^{2}-x^{1}-30\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{\left(x^{2}-x^{1}-30\right)\times 5x^{1-1}-\left(5x^{1}-8\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-30\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(x^{2}-x^{1}-30\right)\times 5x^{0}-\left(5x^{1}-8\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-30\right)^{2}}
ലഘൂകരിക്കുക.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-30\times 5x^{0}-\left(5x^{1}-8\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-30\right)^{2}}
x^{2}-x^{1}-30, 5x^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-30\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-1\right)x^{0}-8\times 2x^{1}-8\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-30\right)^{2}}
5x^{1}-8, 2x^{1}-x^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{5x^{2}-5x^{1}-30\times 5x^{0}-\left(5\times 2x^{1+1}+5\left(-1\right)x^{1}-8\times 2x^{1}-8\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-30\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{5x^{2}-5x^{1}-150x^{0}-\left(10x^{2}-5x^{1}-16x^{1}+8x^{0}\right)}{\left(x^{2}-x^{1}-30\right)^{2}}
ലഘൂകരിക്കുക.
\frac{-5x^{2}+16x^{1}-158x^{0}}{\left(x^{2}-x^{1}-30\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-5x^{2}+16x-158x^{0}}{\left(x^{2}-x-30\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.
\frac{-5x^{2}+16x-158}{\left(x^{2}-x-30\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.