പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,1 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+1,x-1 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-1\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
2 കൊണ്ട് x-1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-2+1=\left(x-1\right)\left(x+1\right)
3x നേടാൻ 2x, x എന്നിവ യോജിപ്പിക്കുക.
3x-1=\left(x-1\right)\left(x+1\right)
-1 ലഭ്യമാക്കാൻ -2, 1 എന്നിവ ചേർക്കുക.
3x-1=x^{2}-1
\left(x-1\right)\left(x+1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 സ്ക്വയർ ചെയ്യുക.
3x-1-x^{2}=-1
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
3x-1-x^{2}+1=0
1 ഇരു വശങ്ങളിലും ചേർക്കുക.
3x-x^{2}=0
0 ലഭ്യമാക്കാൻ -1, 1 എന്നിവ ചേർക്കുക.
-x^{2}+3x=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 3 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-3±3}{2\left(-1\right)}
3^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-3±3}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±3}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3, 3 എന്നതിൽ ചേർക്കുക.
x=0
-2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{6}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-3±3}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -3 എന്നതിൽ നിന്ന് 3 വ്യവകലനം ചെയ്യുക.
x=3
-2 കൊണ്ട് -6 എന്നതിനെ ഹരിക്കുക.
x=0 x=3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -1,1 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+1,x-1 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-1\right)\left(x+1\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
2 കൊണ്ട് x-1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-2+1=\left(x-1\right)\left(x+1\right)
3x നേടാൻ 2x, x എന്നിവ യോജിപ്പിക്കുക.
3x-1=\left(x-1\right)\left(x+1\right)
-1 ലഭ്യമാക്കാൻ -2, 1 എന്നിവ ചേർക്കുക.
3x-1=x^{2}-1
\left(x-1\right)\left(x+1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 സ്ക്വയർ ചെയ്യുക.
3x-1-x^{2}=-1
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
3x-x^{2}=-1+1
1 ഇരു വശങ്ങളിലും ചേർക്കുക.
3x-x^{2}=0
0 ലഭ്യമാക്കാൻ -1, 1 എന്നിവ ചേർക്കുക.
-x^{2}+3x=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-x^{2}+3x}{-1}=\frac{0}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{3}{-1}x=\frac{0}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-3x=\frac{0}{-1}
-1 കൊണ്ട് 3 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x=0
-1 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
ലഘൂകരിക്കുക.
x=3 x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.