പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
n എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{2\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. n, n+1 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം n\left(n+1\right) ആണ്. \frac{2}{n}, \frac{n+1}{n+1} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{1}{n+1}, \frac{n}{n} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2\left(n+1\right)-n}{n\left(n+1\right)}
\frac{2\left(n+1\right)}{n\left(n+1\right)}, \frac{n}{n\left(n+1\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{2n+2-n}{n\left(n+1\right)}
2\left(n+1\right)-n എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{n+2}{n\left(n+1\right)}
2n+2-n എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{n+2}{n^{2}+n}
n\left(n+1\right) വികസിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. n, n+1 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം n\left(n+1\right) ആണ്. \frac{2}{n}, \frac{n+1}{n+1} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{1}{n+1}, \frac{n}{n} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2\left(n+1\right)-n}{n\left(n+1\right)})
\frac{2\left(n+1\right)}{n\left(n+1\right)}, \frac{n}{n\left(n+1\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2n+2-n}{n\left(n+1\right)})
2\left(n+1\right)-n എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+2}{n\left(n+1\right)})
2n+2-n എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+2}{n^{2}+n})
n+1 കൊണ്ട് n ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{\left(n^{2}+n^{1}\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{1}+2)-\left(n^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})}{\left(n^{2}+n^{1}\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{\left(n^{2}+n^{1}\right)n^{1-1}-\left(n^{1}+2\right)\left(2n^{2-1}+n^{1-1}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(n^{2}+n^{1}\right)n^{0}-\left(n^{1}+2\right)\left(2n^{1}+n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{n^{2}n^{0}+n^{1}n^{0}-\left(n^{1}+2\right)\left(2n^{1}+n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
n^{2}+n^{1}, n^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{n^{2}n^{0}+n^{1}n^{0}-\left(n^{1}\times 2n^{1}+n^{1}n^{0}+2\times 2n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
n^{1}+2, 2n^{1}+n^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{n^{2}+n^{1}-\left(2n^{1+1}+n^{1}+2\times 2n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{n^{2}+n^{1}-\left(2n^{2}+n^{1}+4n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{-n^{2}-4n^{1}-2n^{0}}{\left(n^{2}+n^{1}\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{-n^{2}-4n-2n^{0}}{\left(n^{2}+n\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.
\frac{-n^{2}-4n-2}{\left(n^{2}+n\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.