മൂല്യനിർണ്ണയം ചെയ്യുക
-2
ഘടകം
-2
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-8+2\sqrt{3}
3-\sqrt{3} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{12}{3+\sqrt{3}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{12\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}-8+2\sqrt{3}
\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(3-\sqrt{3}\right)}{9-3}-8+2\sqrt{3}
3 സ്ക്വയർ ചെയ്യുക. \sqrt{3} സ്ക്വയർ ചെയ്യുക.
\frac{12\left(3-\sqrt{3}\right)}{6}-8+2\sqrt{3}
6 നേടാൻ 9 എന്നതിൽ നിന്ന് 3 കുറയ്ക്കുക.
2\left(3-\sqrt{3}\right)-8+2\sqrt{3}
2\left(3-\sqrt{3}\right) ലഭിക്കാൻ 6 ഉപയോഗിച്ച് 12\left(3-\sqrt{3}\right) വിഭജിക്കുക.
6-2\sqrt{3}-8+2\sqrt{3}
3-\sqrt{3} കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-2-2\sqrt{3}+2\sqrt{3}
-2 നേടാൻ 6 എന്നതിൽ നിന്ന് 8 കുറയ്ക്കുക.
-2
0 നേടാൻ -2\sqrt{3}, 2\sqrt{3} എന്നിവ യോജിപ്പിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}