മൂല്യനിർണ്ണയം ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
ശരി
m\neq \frac{2}{3}
m എന്നതിനായി സോൾവ് ചെയ്യുക
m\neq \frac{2}{3}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{\frac{1}{2}\left(-3m+2\right)}{3m-2}<0
\frac{1-\frac{3}{2}m}{3m-2} എന്നതിൽ ഇതിനകം ഫാക്ടർ ചെയ്തിട്ടില്ലാത്ത ഗണനപ്രയോഗങ്ങൾ ഫാക്ടർ ചെയ്യുക.
\frac{-\frac{1}{2}\left(3m-2\right)}{3m-2}<0
2-3m എന്നതിലെ നെഗറ്റീവ് ചിഹ്നം വേർതിരിക്കുക.
-\frac{1}{2}<0
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 3m-2 ഒഴിവാക്കുക.
\text{true}
-\frac{1}{2}, 0 എന്നിവ താരതമ്യപ്പെടുത്തുക.
-\frac{3m}{2}+1>0 3m-2<0
For the quotient to be negative, -\frac{3m}{2}+1 and 3m-2 have to be of the opposite signs. -\frac{3m}{2}+1 എന്നത് പോസിറ്റീവും 3m-2 എന്നത് നെഗറ്റീവും ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
m<\frac{2}{3}
ഇരു അസമത്വങ്ങളെയും തൃപ്തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ m<\frac{2}{3} ആണ്.
3m-2>0 -\frac{3m}{2}+1<0
3m-2 എന്നത് പോസിറ്റീവും -\frac{3m}{2}+1 എന്നത് നെഗറ്റീവും ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
m>\frac{2}{3}
ഇരു അസമത്വങ്ങളെയും തൃപ്തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ m>\frac{2}{3} ആണ്.
m\neq \frac{2}{3}
ലഭ്യമാക്കിയ സൊല്യൂഷനുകളുടെ ഏകീകരണമാണ് അന്തിമ സൊല്യൂഷൻ.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}