പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{1}{x}+\frac{2}{2-x}
ഏക അംശമായി 2\times \frac{1}{2-x} ആവിഷ്‌ക്കരിക്കുക.
\frac{-x+2}{x\left(-x+2\right)}+\frac{2x}{x\left(-x+2\right)}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x, 2-x എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം x\left(-x+2\right) ആണ്. \frac{1}{x}, \frac{-x+2}{-x+2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{2}{2-x}, \frac{x}{x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{-x+2+2x}{x\left(-x+2\right)}
\frac{-x+2}{x\left(-x+2\right)}, \frac{2x}{x\left(-x+2\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{x+2}{x\left(-x+2\right)}
-x+2+2x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{x+2}{-x^{2}+2x}
x\left(-x+2\right) വികസിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x}+\frac{2}{2-x})
ഏക അംശമായി 2\times \frac{1}{2-x} ആവിഷ്‌ക്കരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+2}{x\left(-x+2\right)}+\frac{2x}{x\left(-x+2\right)})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. x, 2-x എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം x\left(-x+2\right) ആണ്. \frac{1}{x}, \frac{-x+2}{-x+2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{2}{2-x}, \frac{x}{x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+2+2x}{x\left(-x+2\right)})
\frac{-x+2}{x\left(-x+2\right)}, \frac{2x}{x\left(-x+2\right)} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2}{x\left(-x+2\right)})
-x+2+2x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2}{-x^{2}+2x})
-x+2 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{\left(-x^{2}+2x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)-\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2}+2x^{1})}{\left(-x^{2}+2x^{1}\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{\left(-x^{2}+2x^{1}\right)x^{1-1}-\left(x^{1}+2\right)\left(2\left(-1\right)x^{2-1}+2x^{1-1}\right)}{\left(-x^{2}+2x^{1}\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(-x^{2}+2x^{1}\right)x^{0}-\left(x^{1}+2\right)\left(-2x^{1}+2x^{0}\right)}{\left(-x^{2}+2x^{1}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{-x^{2}x^{0}+2x^{1}x^{0}-\left(x^{1}+2\right)\left(-2x^{1}+2x^{0}\right)}{\left(-x^{2}+2x^{1}\right)^{2}}
-x^{2}+2x^{1}, x^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{-x^{2}x^{0}+2x^{1}x^{0}-\left(x^{1}\left(-2\right)x^{1}+x^{1}\times 2x^{0}+2\left(-2\right)x^{1}+2\times 2x^{0}\right)}{\left(-x^{2}+2x^{1}\right)^{2}}
x^{1}+2, -2x^{1}+2x^{0} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{-x^{2}+2x^{1}-\left(-2x^{1+1}+2x^{1}+2\left(-2\right)x^{1}+2\times 2x^{0}\right)}{\left(-x^{2}+2x^{1}\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{-x^{2}+2x^{1}-\left(-2x^{2}+2x^{1}-4x^{1}+4x^{0}\right)}{\left(-x^{2}+2x^{1}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{x^{2}+4x^{1}-4x^{0}}{\left(-x^{2}+2x^{1}\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{x^{2}+4x-4x^{0}}{\left(-x^{2}+2x\right)^{2}}
ഏതു പദത്തിനും t, t^{1}=t.
\frac{x^{2}+4x-4}{\left(-x^{2}+2x\right)^{2}}
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.