പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x-2+\left(x+2\right)x=x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+2,x-2,x^{2}-4 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x-2+x^{2}+2x=x
x കൊണ്ട് x+2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-2+x^{2}=x
3x നേടാൻ x, 2x എന്നിവ യോജിപ്പിക്കുക.
3x-2+x^{2}-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
2x-2+x^{2}=0
2x നേടാൻ 3x, -x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+2x-2=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി -2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-2±\sqrt{4-4\left(-2\right)}}{2}
2 സ്ക്വയർ ചെയ്യുക.
x=\frac{-2±\sqrt{4+8}}{2}
-4, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{12}}{2}
4, 8 എന്നതിൽ ചേർക്കുക.
x=\frac{-2±2\sqrt{3}}{2}
12 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2\sqrt{3}-2}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 2\sqrt{3} എന്നതിൽ ചേർക്കുക.
x=\sqrt{3}-1
2 കൊണ്ട് -2+2\sqrt{3} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{3}-2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 2\sqrt{3} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{3}-1
2 കൊണ്ട് -2-2\sqrt{3} എന്നതിനെ ഹരിക്കുക.
x=\sqrt{3}-1 x=-\sqrt{3}-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x-2+\left(x+2\right)x=x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+2,x-2,x^{2}-4 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x-2+x^{2}+2x=x
x കൊണ്ട് x+2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-2+x^{2}=x
3x നേടാൻ x, 2x എന്നിവ യോജിപ്പിക്കുക.
3x-2+x^{2}-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
2x-2+x^{2}=0
2x നേടാൻ 3x, -x എന്നിവ യോജിപ്പിക്കുക.
2x+x^{2}=2
2 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
x^{2}+2x=2
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+2x+1^{2}=2+1^{2}
1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+2x+1=2+1
1 സ്ക്വയർ ചെയ്യുക.
x^{2}+2x+1=3
2, 1 എന്നതിൽ ചേർക്കുക.
\left(x+1\right)^{2}=3
x^{2}+2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+1\right)^{2}}=\sqrt{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+1=\sqrt{3} x+1=-\sqrt{3}
ലഘൂകരിക്കുക.
x=\sqrt{3}-1 x=-\sqrt{3}-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
x-2+\left(x+2\right)x=x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+2,x-2,x^{2}-4 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x-2+x^{2}+2x=x
x കൊണ്ട് x+2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-2+x^{2}=x
3x നേടാൻ x, 2x എന്നിവ യോജിപ്പിക്കുക.
3x-2+x^{2}-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
2x-2+x^{2}=0
2x നേടാൻ 3x, -x എന്നിവ യോജിപ്പിക്കുക.
x^{2}+2x-2=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി -2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-2±\sqrt{4-4\left(-2\right)}}{2}
2 സ്ക്വയർ ചെയ്യുക.
x=\frac{-2±\sqrt{4+8}}{2}
-4, -2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{12}}{2}
4, 8 എന്നതിൽ ചേർക്കുക.
x=\frac{-2±2\sqrt{3}}{2}
12 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{2\sqrt{3}-2}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 2\sqrt{3} എന്നതിൽ ചേർക്കുക.
x=\sqrt{3}-1
2 കൊണ്ട് -2+2\sqrt{3} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{3}-2}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{3}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 2\sqrt{3} വ്യവകലനം ചെയ്യുക.
x=-\sqrt{3}-1
2 കൊണ്ട് -2-2\sqrt{3} എന്നതിനെ ഹരിക്കുക.
x=\sqrt{3}-1 x=-\sqrt{3}-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x-2+\left(x+2\right)x=x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ -2,2 മൂല്യങ്ങൾ ഏതുമായും തുല്യമാക്കാൻ കഴിയുന്നില്ല. x+2,x-2,x^{2}-4 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ \left(x-2\right)\left(x+2\right) ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
x-2+x^{2}+2x=x
x കൊണ്ട് x+2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x-2+x^{2}=x
3x നേടാൻ x, 2x എന്നിവ യോജിപ്പിക്കുക.
3x-2+x^{2}-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
2x-2+x^{2}=0
2x നേടാൻ 3x, -x എന്നിവ യോജിപ്പിക്കുക.
2x+x^{2}=2
2 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
x^{2}+2x=2
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+2x+1^{2}=2+1^{2}
1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+2x+1=2+1
1 സ്ക്വയർ ചെയ്യുക.
x^{2}+2x+1=3
2, 1 എന്നതിൽ ചേർക്കുക.
\left(x+1\right)^{2}=3
x^{2}+2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+1\right)^{2}}=\sqrt{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+1=\sqrt{3} x+1=-\sqrt{3}
ലഘൂകരിക്കുക.
x=\sqrt{3}-1 x=-\sqrt{3}-1
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.