മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{2567}{360}\approx 7.130555556
ഘടകം
\frac{17 \cdot 151}{2 ^ {3} \cdot 3 ^ {2} \cdot 5} = 7\frac{47}{360} = 7.1305555555555555
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{1}{8}+\frac{32}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
4 എന്നതിനെ \frac{32}{8} എന്ന അംശത്തിലേക്ക് മാറ്റുക.
\frac{1+32}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
\frac{1}{8}, \frac{32}{8} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{33}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
33 ലഭ്യമാക്കാൻ 1, 32 എന്നിവ ചേർക്കുക.
\frac{33}{8}-\left(\frac{4}{3}\times \frac{1}{3}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{33}{8}-\left(\frac{4\times 1}{3\times 3}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{4}{3}, \frac{1}{3} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{33}{8}-\left(\frac{4}{9}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
\frac{4\times 1}{3\times 3} എന്ന അംശത്തിൽ ഗുണനം നടത്തുക.
\frac{33}{8}-\left(\frac{16}{36}-\frac{9}{36}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
9, 4 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 36 ആണ്. \frac{4}{9}, \frac{1}{4} എന്നിവയെ 36 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{33}{8}-\frac{16-9}{36}+\frac{\frac{8}{5}}{\frac{1}{2}}
\frac{16}{36}, \frac{9}{36} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{33}{8}-\frac{7}{36}+\frac{\frac{8}{5}}{\frac{1}{2}}
7 നേടാൻ 16 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
\frac{297}{72}-\frac{14}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
8, 36 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 72 ആണ്. \frac{33}{8}, \frac{7}{36} എന്നിവയെ 72 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{297-14}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
\frac{297}{72}, \frac{14}{72} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{283}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
283 നേടാൻ 297 എന്നതിൽ നിന്ന് 14 കുറയ്ക്കുക.
\frac{283}{72}+\frac{8}{5}\times 2
\frac{1}{2} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{8}{5} ഗുണിക്കുന്നതിലൂടെ \frac{1}{2} കൊണ്ട് \frac{8}{5} എന്നതിനെ ഹരിക്കുക.
\frac{283}{72}+\frac{8\times 2}{5}
ഏക അംശമായി \frac{8}{5}\times 2 ആവിഷ്ക്കരിക്കുക.
\frac{283}{72}+\frac{16}{5}
16 നേടാൻ 8, 2 എന്നിവ ഗുണിക്കുക.
\frac{1415}{360}+\frac{1152}{360}
72, 5 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 360 ആണ്. \frac{283}{72}, \frac{16}{5} എന്നിവയെ 360 എന്ന ഭിന്നസംഖ്യാഛേദിയുള്ള അംശങ്ങളാക്കി മാറ്റുക.
\frac{1415+1152}{360}
\frac{1415}{360}, \frac{1152}{360} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{2567}{360}
2567 ലഭ്യമാക്കാൻ 1415, 1152 എന്നിവ ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}