മൂല്യനിർണ്ണയം ചെയ്യുക
-\frac{1}{2}+\frac{1}{2x}+\frac{3}{4x^{2}}
ഘടകം
-\frac{\frac{1}{2}\left(x-\frac{1-\sqrt{7}}{2}\right)\left(x-\frac{\sqrt{7}+1}{2}\right)}{x^{2}}
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{1}{2x}-\frac{1}{2}+\frac{12}{16x^{2}}
7 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{7}{14} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{1}{2x}-\frac{x}{2x}+\frac{12}{16x^{2}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 2x, 2 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 2x ആണ്. \frac{1}{2}, \frac{x}{x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{1-x}{2x}+\frac{12}{16x^{2}}
\frac{1}{2x}, \frac{x}{2x} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{\left(1-x\right)\times 8x}{16x^{2}}+\frac{12}{16x^{2}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 2x, 16x^{2} എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 16x^{2} ആണ്. \frac{1-x}{2x}, \frac{8x}{8x} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\left(1-x\right)\times 8x+12}{16x^{2}}
\frac{\left(1-x\right)\times 8x}{16x^{2}}, \frac{12}{16x^{2}} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{8x-8x^{2}+12}{16x^{2}}
\left(1-x\right)\times 8x+12 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{-2\times 4\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{16x^{2}}
\frac{8x-8x^{2}+12}{16x^{2}} എന്നതിൽ ഇതിനകം ഫാക്ടർ ചെയ്തിട്ടില്ലാത്ത ഗണനപ്രയോഗങ്ങൾ ഫാക്ടർ ചെയ്യുക.
\frac{-\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{2x^{2}}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 2\times 4 ഒഴിവാക്കുക.
\frac{\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും -1 ഒഴിവാക്കുക.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
-\frac{1}{2}\sqrt{7}+\frac{1}{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
\frac{\left(x+\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{7}-\frac{1}{2}\right)}{-2x^{2}}
\frac{1}{2}\sqrt{7}+\frac{1}{2} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
\frac{x^{2}-x-\frac{1}{4}\left(\sqrt{7}\right)^{2}+\frac{1}{4}}{-2x^{2}}
x-\frac{1}{2}\sqrt{7}-\frac{1}{2} കൊണ്ട് x+\frac{1}{2}\sqrt{7}-\frac{1}{2} ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{x^{2}-x-\frac{1}{4}\times 7+\frac{1}{4}}{-2x^{2}}
\sqrt{7} എന്നതിന്റെ വർഗ്ഗം 7 ആണ്.
\frac{x^{2}-x-\frac{7}{4}+\frac{1}{4}}{-2x^{2}}
-\frac{7}{4} നേടാൻ -\frac{1}{4}, 7 എന്നിവ ഗുണിക്കുക.
\frac{x^{2}-x-\frac{3}{2}}{-2x^{2}}
-\frac{3}{2} ലഭ്യമാക്കാൻ -\frac{7}{4}, \frac{1}{4} എന്നിവ ചേർക്കുക.
\frac{\frac{1}{2}\times 2\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-2x^{2}}
ഇതിനകം ഫാക്ടർ ചെയ്തിട്ടില്ലാത്ത ഗണനപ്രയോഗങ്ങൾ ഫാക്ടർ ചെയ്യുക.
\frac{\frac{1}{2}\left(x-\left(-\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{7}+\frac{1}{2}\right)\right)}{-x^{2}}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 2 ഒഴിവാക്കുക.
\frac{\frac{1}{2}x^{2}-\frac{1}{2}x-\frac{3}{4}}{-x^{2}}
ഗണനപ്രയോഗം വികസിപ്പിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}