പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. x,2 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 2x ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-x^{2}-3x=x
-\frac{1}{2}x^{2}-\frac{3}{2}x കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-x^{2}-3x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
-x^{2}-4x=0
-4x നേടാൻ -3x, -x എന്നിവ യോജിപ്പിക്കുക.
x\left(-x-4\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, -x-4=0 എന്നിവ സോൾവ് ചെയ്യുക.
x=-4
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. x,2 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 2x ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-x^{2}-3x=x
-\frac{1}{2}x^{2}-\frac{3}{2}x കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-x^{2}-3x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
-x^{2}-4x=0
-4x നേടാൻ -3x, -x എന്നിവ യോജിപ്പിക്കുക.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി -4 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-4\right)±4}{2\left(-1\right)}
\left(-4\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4±4}{2\left(-1\right)}
-4 എന്നതിന്‍റെ വിപരീതം 4 ആണ്.
x=\frac{4±4}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{8}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±4}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4, 4 എന്നതിൽ ചേർക്കുക.
x=-4
-2 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
x=\frac{0}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±4}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
x=0
-2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-4 x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x=-4
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
2\left(-\frac{1}{2}x^{2}-\frac{3}{2}x\right)=x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. x,2 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 2x ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
-x^{2}-3x=x
-\frac{1}{2}x^{2}-\frac{3}{2}x കൊണ്ട് 2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-x^{2}-3x-x=0
ഇരുവശങ്ങളിൽ നിന്നും x കുറയ്ക്കുക.
-x^{2}-4x=0
-4x നേടാൻ -3x, -x എന്നിവ യോജിപ്പിക്കുക.
\frac{-x^{2}-4x}{-1}=\frac{0}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{0}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+4x=\frac{0}{-1}
-1 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
x^{2}+4x=0
-1 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}+4x+2^{2}=2^{2}
2 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 4-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും 2 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+4x+4=4
2 സ്ക്വയർ ചെയ്യുക.
\left(x+2\right)^{2}=4
x^{2}+4x+4 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+2=2 x+2=-2
ലഘൂകരിക്കുക.
x=0 x=-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
x=-4
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.