ഘടകം
\frac{\sqrt{2}\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{2}
മൂല്യനിർണ്ണയം ചെയ്യുക
-\frac{2\sqrt{3}ba^{2}c^{5}}{2}+\frac{2\sqrt{5}ab^{2}c^{4}}{2}+\sqrt{2}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
factor(\frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc})
4 എന്നതിന്റെ സ്ക്വയർ റൂട്ട് കണക്കാക്കുക, 2 ലഭിക്കും.
factor(\frac{abc\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{\sqrt{2}abc})
\frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc} എന്നതിൽ ഇതിനകം ഫാക്ടർ ചെയ്തിട്ടില്ലാത്ത ഗണനപ്രയോഗങ്ങൾ ഫാക്ടർ ചെയ്യുക.
factor(\frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}})
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും abc ഒഴിവാക്കുക.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}})
\sqrt{2} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{2})
\sqrt{2} എന്നതിന്റെ വർഗ്ഗം 2 ആണ്.
factor(\frac{-\sqrt{6}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
\sqrt{2} കൊണ്ട് -\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
factor(\frac{-\sqrt{2}\sqrt{3}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
6=2\times 3 ഘടകക്രിയ ചെയ്യുക. \sqrt{2}\sqrt{3} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഗുണനഫലമെന്ന നിലയിൽ, \sqrt{2\times 3} എന്ന ഗുണനഫലത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
2 നേടാൻ \sqrt{2}, \sqrt{2} എന്നിവ ഗുണിക്കുക.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{2}\sqrt{5}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
10=2\times 5 ഘടകക്രിയ ചെയ്യുക. \sqrt{2}\sqrt{5} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഗുണനഫലമെന്ന നിലയിൽ, \sqrt{2\times 5} എന്ന ഗുണനഫലത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+2ab^{2}c^{4}\sqrt{5}+2\sqrt{2}}{2})
2 നേടാൻ \sqrt{2}, \sqrt{2} എന്നിവ ഗുണിക്കുക.
2\left(-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}\right)
-2ba^{2}c^{5}\times 3^{\frac{1}{2}}+2ab^{2}c^{4}\times 5^{\frac{1}{2}}+2\times 2^{\frac{1}{2}} പരിഗണിക്കുക. 2 ഘടക ലഘൂകരണം ചെയ്യുക.
-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക. ലഘൂകരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}