മൂല്യനിർണ്ണയം ചെയ്യുക
\sqrt{2}+2\approx 3.414213562
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1}
12=2^{2}\times 3 ഘടകക്രിയ ചെയ്യുക. \sqrt{2^{2}}\sqrt{3} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഗുണനഫലമെന്ന നിലയിൽ, \sqrt{2^{2}\times 3} എന്ന ഗുണനഫലത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക. 2^{2} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
\sqrt{3}-1 കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{3-1}
\sqrt{3} സ്ക്വയർ ചെയ്യുക. 1 സ്ക്വയർ ചെയ്യുക.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{2}
2 നേടാൻ 3 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
\frac{2\left(\sqrt{3}\right)^{2}-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
2\sqrt{3}+\sqrt{6}+\sqrt{2}+2 എന്നതിന്റെ ഓരോ പദത്തെയും \sqrt{3}-1 എന്നതിന്റെ ഓരോ പദം ഉപയോഗിച്ച് ഗുണിക്കുന്നതിലൂടെ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത പ്രയോഗിക്കുക.
\frac{2\times 3-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
\sqrt{3} എന്നതിന്റെ വർഗ്ഗം 3 ആണ്.
\frac{6-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
6 നേടാൻ 2, 3 എന്നിവ ഗുണിക്കുക.
\frac{6-2\sqrt{3}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
6=3\times 2 ഘടകക്രിയ ചെയ്യുക. \sqrt{3}\sqrt{2} എന്നീ വർഗ്ഗമൂലങ്ങളുടെ ഗുണനഫലമെന്ന നിലയിൽ, \sqrt{3\times 2} എന്ന ഗുണനഫലത്തിന്റെ വർഗ്ഗമൂലം പുനരാലേഖനം ചെയ്യുക.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
3 നേടാൻ \sqrt{3}, \sqrt{3} എന്നിവ ഗുണിക്കുക.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}+2\sqrt{3}-2}{2}
\sqrt{2}, \sqrt{3} എന്നിവ ഗുണിക്കാൻ, വർഗ്ഗമൂലത്തിന് കീഴിലുള്ള സംഖ്യകൾ ഗുണിക്കുക.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{2}+2\sqrt{3}-2}{2}
0 നേടാൻ -\sqrt{6}, \sqrt{6} എന്നിവ യോജിപ്പിക്കുക.
\frac{6-2\sqrt{3}+2\sqrt{2}+2\sqrt{3}-2}{2}
2\sqrt{2} നേടാൻ 3\sqrt{2}, -\sqrt{2} എന്നിവ യോജിപ്പിക്കുക.
\frac{6+2\sqrt{2}-2}{2}
0 നേടാൻ -2\sqrt{3}, 2\sqrt{3} എന്നിവ യോജിപ്പിക്കുക.
\frac{4+2\sqrt{2}}{2}
4 നേടാൻ 6 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
2+\sqrt{2}
2+\sqrt{2} ലഭിക്കാൻ 2 ഉപയോഗിച്ച് 4+2\sqrt{2} എന്നതിന്റെ ഓരോ പദവും വിഭജിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}