പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
a എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa}{a}+\frac{1}{a}}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a, \frac{a}{a} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa+1}{a}}}
\frac{aa}{a}, \frac{1}{a} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{a^{2}+1}{a}}}
aa+1 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\frac{1}{a+1}}{a-\frac{a}{a^{2}+1}}
\frac{a^{2}+1}{a} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് 1 ഗുണിക്കുന്നതിലൂടെ \frac{a^{2}+1}{a} കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)}{a^{2}+1}-\frac{a}{a^{2}+1}}
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a, \frac{a^{2}+1}{a^{2}+1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)-a}{a^{2}+1}}
\frac{a\left(a^{2}+1\right)}{a^{2}+1}, \frac{a}{a^{2}+1} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{\frac{1}{a+1}}{\frac{a^{3}+a-a}{a^{2}+1}}
a\left(a^{2}+1\right)-a എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\frac{1}{a+1}}{\frac{a^{3}}{a^{2}+1}}
a^{3}+a-a എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{a^{2}+1}{\left(a+1\right)a^{3}}
\frac{a^{3}}{a^{2}+1} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{1}{a+1} ഗുണിക്കുന്നതിലൂടെ \frac{a^{3}}{a^{2}+1} കൊണ്ട് \frac{1}{a+1} എന്നതിനെ ഹരിക്കുക.
\frac{a^{2}+1}{a^{4}+a^{3}}
a^{3} കൊണ്ട് a+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa}{a}+\frac{1}{a}}})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a, \frac{a}{a} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{aa+1}{a}}})
\frac{aa}{a}, \frac{1}{a} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ ചേർത്തുകൊണ്ട് അവയെ ചേർക്കുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{1}{\frac{a^{2}+1}{a}}})
aa+1 എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{a-\frac{a}{a^{2}+1}})
\frac{a^{2}+1}{a} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് 1 ഗുണിക്കുന്നതിലൂടെ \frac{a^{2}+1}{a} കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)}{a^{2}+1}-\frac{a}{a^{2}+1}})
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. a, \frac{a^{2}+1}{a^{2}+1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a\left(a^{2}+1\right)-a}{a^{2}+1}})
\frac{a\left(a^{2}+1\right)}{a^{2}+1}, \frac{a}{a^{2}+1} എന്നിവയ്‌ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്‌ത് അവയെ വ്യവകലനം ചെയ്യുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a^{3}+a-a}{a^{2}+1}})
a\left(a^{2}+1\right)-a എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{1}{a+1}}{\frac{a^{3}}{a^{2}+1}})
a^{3}+a-a എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+1}{\left(a+1\right)a^{3}})
\frac{a^{3}}{a^{2}+1} എന്നതിന്‍റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{1}{a+1} ഗുണിക്കുന്നതിലൂടെ \frac{a^{3}}{a^{2}+1} കൊണ്ട് \frac{1}{a+1} എന്നതിനെ ഹരിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+1}{a^{4}+a^{3}})
a^{3} കൊണ്ട് a+1 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{\left(a^{4}+a^{3}\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}+1)-\left(a^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3})}{\left(a^{4}+a^{3}\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്‌ഷനുകൾക്കായി, രണ്ട് ഫംഗ്‌ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്‍റെ സ്‌ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്‍റെയും ഹരണവുമാണ്.
\frac{\left(a^{4}+a^{3}\right)\times 2a^{2-1}-\left(a^{2}+1\right)\left(4a^{4-1}+3a^{3-1}\right)}{\left(a^{4}+a^{3}\right)^{2}}
ഒരു പോളിനോമിലിന്‍റെ അനുമാനം അതിന്‍റെ പദങ്ങളുടെ അനുമാനങ്ങളുടെ ആകെ തുകയാണ്. ഒരു സ്ഥിര പദത്തിന്‍റെ അനുമാനം 0 ആണ്. ax^{n} എന്നതിന്‍റെ അനുമാനം nax^{n-1} ആണ്.
\frac{\left(a^{4}+a^{3}\right)\times 2a^{1}-\left(a^{2}+1\right)\left(4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{a^{4}\times 2a^{1}+a^{3}\times 2a^{1}-\left(a^{2}+1\right)\left(4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
a^{4}+a^{3}, 2a^{1} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{a^{4}\times 2a^{1}+a^{3}\times 2a^{1}-\left(a^{2}\times 4a^{3}+a^{2}\times 3a^{2}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
a^{2}+1, 4a^{3}+3a^{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{2a^{4+1}+2a^{3+1}-\left(4a^{2+3}+3a^{2+2}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
ഒരേ ബേസിന്‍റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്‍റുകൾ ചേർക്കുക.
\frac{2a^{5}+2a^{4}-\left(4a^{5}+3a^{4}+4a^{3}+3a^{2}\right)}{\left(a^{4}+a^{3}\right)^{2}}
ലഘൂകരിക്കുക.
\frac{-2a^{5}-a^{4}-4a^{3}-3a^{2}}{\left(a^{4}+a^{3}\right)^{2}}
ഒരുപോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.