θ എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
-\frac{1}{\left(\sin(\theta )\right)^{2}}
മൂല്യനിർണ്ണയം ചെയ്യുക
\cot(\theta )
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{\mathrm{d}}{\mathrm{d}\theta }(\frac{\cos(\theta )}{\sin(\theta )})
കോടാൻജെന്റ് നിർവചനം ഉപയോഗിക്കുക.
\frac{\sin(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\cos(\theta ))-\cos(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))}{\left(\sin(\theta )\right)^{2}}
ഏതെങ്കിലും രണ്ട് ഡിഫറൻഷ്യബിൾ ഫംഗ്ഷനുകൾക്കായി, രണ്ട് ഫംഗ്ഷൻ ഹരണഫലങ്ങളുടെ ഡെറിവേറ്റീവ് എന്നത് ന്യൂമറേറ്റർ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ഭിന്നസംഖ്യാഛേദവും ഭിന്നസംഖ്യാഛേദ ഡെറിവേറ്റീവുമായി ഗുണിക്കുന്ന ന്യൂമറേറ്ററും തമ്മിലുള്ള വ്യവകലനവും ഒപ്പം ഭിന്നസംഖ്യാഛേദത്തിന്റെ സ്ക്വയർ കൊണ്ടുള്ള എല്ലാത്തിന്റെയും ഹരണവുമാണ്.
\frac{\sin(\theta )\left(-\sin(\theta )\right)-\cos(\theta )\cos(\theta )}{\left(\sin(\theta )\right)^{2}}
sin(\theta ) എന്നതിന്റെ ഡെറിവേറ്റീവ് cos(\theta ) എന്നതും cos(\theta ) എന്നതിന്റെ ഡെറിവേറ്റീവ് −sin(\theta ) എന്നതുമാണ്.
-\frac{\left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2}}{\left(\sin(\theta )\right)^{2}}
ലഘൂകരിക്കുക.
-\frac{1}{\left(\sin(\theta )\right)^{2}}
പൈതഗോറിയൻ ഐഡന്റിറ്റി ഉപയോഗിക്കുക.
-\left(\csc(\theta )\right)^{2}
കൊസീക്കന്റ് നിർവചനം ഉപയോഗിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}