x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-3
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
14\left(\frac{2}{7}x+\frac{9}{2}-\left(\frac{4-5x}{7}-\frac{3x+4}{2}-\frac{9}{14}x\right)\right)-14=21x
7,2,14 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 14 ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
14\left(\frac{2}{7}x+\frac{9}{2}-\left(\frac{2\left(4-5x\right)}{14}-\frac{7\left(3x+4\right)}{14}-\frac{9}{14}x\right)\right)-14=21x
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 7, 2 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 14 ആണ്. \frac{4-5x}{7}, \frac{2}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക. \frac{3x+4}{2}, \frac{7}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
14\left(\frac{2}{7}x+\frac{9}{2}-\left(\frac{2\left(4-5x\right)-7\left(3x+4\right)}{14}-\frac{9}{14}x\right)\right)-14=21x
\frac{2\left(4-5x\right)}{14}, \frac{7\left(3x+4\right)}{14} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
14\left(\frac{2}{7}x+\frac{9}{2}-\left(\frac{8-10x-21x-28}{14}-\frac{9}{14}x\right)\right)-14=21x
2\left(4-5x\right)-7\left(3x+4\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
14\left(\frac{2}{7}x+\frac{9}{2}-\left(\frac{-20-31x}{14}-\frac{9}{14}x\right)\right)-14=21x
8-10x-21x-28 എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
14\left(\frac{2}{7}x+\frac{9}{2}-\frac{-20-31x}{14}-\left(-\frac{9}{14}x\right)\right)-14=21x
\frac{-20-31x}{14}-\frac{9}{14}x എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
14\left(\frac{2}{7}x+\frac{9}{2}-\frac{-20-31x}{14}+\frac{9}{14}x\right)-14=21x
-\frac{9}{14}x എന്നതിന്റെ വിപരീതം \frac{9}{14}x ആണ്.
14\left(\frac{13}{14}x+\frac{9}{2}-\frac{-20-31x}{14}\right)-14=21x
\frac{13}{14}x നേടാൻ \frac{2}{7}x, \frac{9}{14}x എന്നിവ യോജിപ്പിക്കുക.
14\left(\frac{13}{14}x+\frac{9\times 7}{14}-\frac{-20-31x}{14}\right)-14=21x
ഗണനപ്രയോഗങ്ങൾ സങ്കലനം അല്ലെങ്കിൽ വ്യവകലനം ചെയ്യാൻ, അവയുടെ ഛേദങ്ങൾ സമാനമാക്കുന്നതിന് അവ വികസിപ്പിക്കുക. 2, 14 എന്നിവയുടെ ലഘുതമ സാധാരണ ഗുണിതം 14 ആണ്. \frac{9}{2}, \frac{7}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
14\left(\frac{13}{14}x+\frac{9\times 7-\left(-20-31x\right)}{14}\right)-14=21x
\frac{9\times 7}{14}, \frac{-20-31x}{14} എന്നിവയ്ക്കുള്ളത് ഒരേ ഛേദമായതിനാൽ, അവയുടെ അംശങ്ങൾ വ്യവകലനം ചെയ്ത് അവയെ വ്യവകലനം ചെയ്യുക.
14\left(\frac{13}{14}x+\frac{63+20+31x}{14}\right)-14=21x
9\times 7-\left(-20-31x\right) എന്നതിൽ ഗുണനങ്ങൾ നടത്തുക.
14\left(\frac{13}{14}x+\frac{83+31x}{14}\right)-14=21x
63+20+31x എന്നിവ പോലുള്ള പദങ്ങൾ യോജിപ്പിക്കുക.
14\times \frac{13}{14}x+14\times \frac{83+31x}{14}-14=21x
\frac{13}{14}x+\frac{83+31x}{14} കൊണ്ട് 14 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
13x+14\times \frac{83+31x}{14}-14=21x
14, 14 എന്നിവ ഒഴിവാക്കുക.
13x+\frac{14\left(83+31x\right)}{14}-14=21x
ഏക അംശമായി 14\times \frac{83+31x}{14} ആവിഷ്ക്കരിക്കുക.
13x+83+31x-14=21x
14, 14 എന്നിവ ഒഴിവാക്കുക.
44x+83-14=21x
44x നേടാൻ 13x, 31x എന്നിവ യോജിപ്പിക്കുക.
44x+69=21x
69 നേടാൻ 83 എന്നതിൽ നിന്ന് 14 കുറയ്ക്കുക.
44x+69-21x=0
ഇരുവശങ്ങളിൽ നിന്നും 21x കുറയ്ക്കുക.
23x+69=0
23x നേടാൻ 44x, -21x എന്നിവ യോജിപ്പിക്കുക.
23x=-69
ഇരുവശങ്ങളിൽ നിന്നും 69 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
x=\frac{-69}{23}
ഇരുവശങ്ങളെയും 23 കൊണ്ട് ഹരിക്കുക.
x=-3
-3 ലഭിക്കാൻ 23 ഉപയോഗിച്ച് -69 വിഭജിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}