മൂല്യനിർണ്ണയം ചെയ്യുക
0
ഘടകം
0
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}xy\left(x-\frac{1}{2}y\right)\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(x-\frac{1}{2}y\right)^{3} വികസിപ്പിക്കാൻ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
\left(x^{3}-\frac{3}{2}x^{2}y+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}+\frac{3}{2}yx^{2}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
x-\frac{1}{2}y കൊണ്ട് \frac{3}{2}xy ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\left(x^{3}+\frac{3}{4}xy^{2}-\frac{1}{8}y^{3}-\frac{3}{4}xy^{2}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
0 നേടാൻ -\frac{3}{2}x^{2}y, \frac{3}{2}yx^{2} എന്നിവ യോജിപ്പിക്കുക.
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right)-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
0 നേടാൻ \frac{3}{4}xy^{2}, -\frac{3}{4}xy^{2} എന്നിവ യോജിപ്പിക്കുക.
\left(x^{3}\right)^{2}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(x^{3}-\frac{1}{8}y^{3}\right)\left(\frac{1}{8}y^{3}+x^{3}\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{6}-\left(\frac{1}{8}y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 6 നേടാൻ 3, 2 എന്നിവ ഗുണിക്കുക.
x^{6}-\left(\frac{1}{8}\right)^{2}\left(y^{3}\right)^{2}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
\left(\frac{1}{8}y^{3}\right)^{2} വികസിപ്പിക്കുക.
x^{6}-\left(\frac{1}{8}\right)^{2}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 6 നേടാൻ 3, 2 എന്നിവ ഗുണിക്കുക.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}y^{2}\right)^{3}-x^{6}
2-ന്റെ പവറിലേക്ക് \frac{1}{8} കണക്കാക്കി \frac{1}{64} നേടുക.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}\left(y^{2}\right)^{3}-x^{6}
\left(-\frac{1}{4}y^{2}\right)^{3} വികസിപ്പിക്കുക.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{4}\right)^{3}y^{6}-x^{6}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 6 നേടാൻ 2, 3 എന്നിവ ഗുണിക്കുക.
x^{6}-\frac{1}{64}y^{6}-\left(-\frac{1}{64}y^{6}\right)-x^{6}
3-ന്റെ പവറിലേക്ക് -\frac{1}{4} കണക്കാക്കി -\frac{1}{64} നേടുക.
x^{6}-\frac{1}{64}y^{6}+\frac{1}{64}y^{6}-x^{6}
-\frac{1}{64}y^{6} എന്നതിന്റെ വിപരീതം \frac{1}{64}y^{6} ആണ്.
x^{6}-x^{6}
0 നേടാൻ -\frac{1}{64}y^{6}, \frac{1}{64}y^{6} എന്നിവ യോജിപ്പിക്കുക.
0
0 നേടാൻ x^{6}, -x^{6} എന്നിവ യോജിപ്പിക്കുക.
\frac{\left(\left(2x-y\right)^{3}+6xy\left(2x-y\right)\right)\left(y^{3}+8x^{3}\right)+y^{6}-64x^{6}}{64}
\frac{1}{64} ഘടക ലഘൂകരണം ചെയ്യുക.
0
ലഘൂകരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}