മൂല്യനിർണ്ണയം ചെയ്യുക
-\frac{33}{2}=-16.5
ഘടകം
-\frac{33}{2} = -16\frac{1}{2} = -16.5
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(x^{2}-1\right)^{2}-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x+1\right)\left(x-1\right) പരിഗണിക്കുക. ഗുണനത്തെ ഈ നിയമം ഉപയോഗിച്ച് വർഗ്ഗങ്ങളുടെ വ്യത്യാസമായി പരിവർത്തനം ചെയ്യാനാകും: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 സ്ക്വയർ ചെയ്യുക.
\left(x^{2}\right)^{2}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x^{2}-1\right)^{2} വികസിപ്പിക്കാൻ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{4}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
x^{4}-2x^{2}+1-\left(4+4x^{2}+\left(x^{2}\right)^{2}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(2+x^{2}\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
x^{4}-2x^{2}+1-\left(4+4x^{2}+x^{4}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 4 നേടാൻ 2, 2 എന്നിവ ഗുണിക്കുക.
x^{4}-2x^{2}+1-4-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
4+4x^{2}+x^{4} എന്നതിന്റെ വിപരീതം കണ്ടെത്താൻ, ഓരോ പദത്തിന്റെയും വിപരീതം കണ്ടെത്തുക.
x^{4}-2x^{2}-3-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-3 നേടാൻ 1 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
x^{4}-6x^{2}-3-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-6x^{2} നേടാൻ -2x^{2}, -4x^{2} എന്നിവ യോജിപ്പിക്കുക.
-6x^{2}-3+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
0 നേടാൻ x^{4}, -x^{4} എന്നിവ യോജിപ്പിക്കുക.
-6x^{2}-3+\left(3x-\frac{9}{2}\right)\left(2x+3\right)
2x-3 കൊണ്ട് \frac{3}{2} ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-6x^{2}-3+6x^{2}-\frac{27}{2}
2x+3 കൊണ്ട് 3x-\frac{9}{2} ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
-3-\frac{27}{2}
0 നേടാൻ -6x^{2}, 6x^{2} എന്നിവ യോജിപ്പിക്കുക.
-\frac{33}{2}
-\frac{33}{2} നേടാൻ -3 എന്നതിൽ നിന്ന് \frac{27}{2} കുറയ്ക്കുക.
\frac{2\left(\left(x+1\right)\left(x-1\right)\right)^{2}-2\left(2+x^{2}\right)^{2}+3\left(2x-3\right)\left(2x+3\right)}{2}
\frac{1}{2} ഘടക ലഘൂകരണം ചെയ്യുക.
-\frac{33}{2}
ലഘൂകരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}