മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{1}{a^{5}}
വികസിപ്പിക്കുക
\frac{1}{a^{5}}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റിൽ നിന്നും ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
\frac{a^{4}}{b^{3}} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റിൽ നിന്നും ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
\frac{b^{5}}{a^{5}} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} ഗുണിക്കുന്നതിലൂടെ \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} കൊണ്ട് \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} എന്നതിനെ ഹരിക്കുക.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. -20 നേടാൻ 4, -5 എന്നിവ ഗുണിക്കുക.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 15 നേടാൻ 5, 3 എന്നിവ ഗുണിക്കുക.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്റുകൾ ചേർക്കുക. -5 ലഭ്യമാക്കാൻ -20, 15 എന്നിവ ചേർക്കുക.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. -15 നേടാൻ 3, -5 എന്നിവ ഗുണിക്കുക.
\frac{a^{-5}}{b^{-15}b^{15}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 15 നേടാൻ 5, 3 എന്നിവ ഗുണിക്കുക.
\frac{a^{-5}}{1}
1 നേടാൻ b^{-15}, b^{15} എന്നിവ ഗുണിക്കുക.
a^{-5}
ഒന്ന് കൊണ്ട് ഹരിക്കപ്പെടുന്ന എല്ലാത്തിനും അതുതന്നെ ഉത്തരമായി ലഭിക്കുന്നു.
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റിൽ നിന്നും ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
\frac{a^{4}}{b^{3}} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റിൽ നിന്നും ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഹരിക്കാൻ, ഭിന്നസംഖ്യാഛേദിയുടെ എക്സ്പോണന്റിൽ നിന്നും ന്യൂമറേറ്ററിന്റെ എക്സ്പോണന്റ് കുറയ്ക്കുക.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
\frac{b^{5}}{a^{5}} എന്നതിന് പവർ നൽകാൻ, അംശവും ഛേദവും പവറിലേക്ക് ഉയർത്തിയ ശേഷം ഹരിക്കുക.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} ഗുണിക്കുന്നതിലൂടെ \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} കൊണ്ട് \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} എന്നതിനെ ഹരിക്കുക.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. -20 നേടാൻ 4, -5 എന്നിവ ഗുണിക്കുക.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 15 നേടാൻ 5, 3 എന്നിവ ഗുണിക്കുക.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
ഒരേ ബേസിന്റെ പവറുകൾ ഗുണിക്കാൻ, അവയുടെ എക്സ്പോണന്റുകൾ ചേർക്കുക. -5 ലഭ്യമാക്കാൻ -20, 15 എന്നിവ ചേർക്കുക.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. -15 നേടാൻ 3, -5 എന്നിവ ഗുണിക്കുക.
\frac{a^{-5}}{b^{-15}b^{15}}
ഒരു പവർ മറ്റൊരു പവറിലേക്ക് ഉയർത്താൻ, എക്സ്പോണന്റുകൾ ഗുണിക്കുക. 15 നേടാൻ 5, 3 എന്നിവ ഗുണിക്കുക.
\frac{a^{-5}}{1}
1 നേടാൻ b^{-15}, b^{15} എന്നിവ ഗുണിക്കുക.
a^{-5}
ഒന്ന് കൊണ്ട് ഹരിക്കപ്പെടുന്ന എല്ലാത്തിനും അതുതന്നെ ഉത്തരമായി ലഭിക്കുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}