പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x^{2}-9x+1=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4}}{2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-9\right)±\sqrt{81-4}}{2}
-9 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-9\right)±\sqrt{77}}{2}
81, -4 എന്നതിൽ ചേർക്കുക.
x=\frac{9±\sqrt{77}}{2}
-9 എന്നതിന്‍റെ വിപരീതം 9 ആണ്.
x=\frac{\sqrt{77}+9}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{9±\sqrt{77}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9, \sqrt{77} എന്നതിൽ ചേർക്കുക.
x=\frac{9-\sqrt{77}}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{9±\sqrt{77}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 9 എന്നതിൽ നിന്ന് \sqrt{77} വ്യവകലനം ചെയ്യുക.
x^{2}-9x+1=\left(x-\frac{\sqrt{77}+9}{2}\right)\left(x-\frac{9-\sqrt{77}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{9+\sqrt{77}}{2} എന്നതും, x_{2}-നായി \frac{9-\sqrt{77}}{2} എന്നതും പകരം വയ്‌ക്കുക.