ഘടകം
\left(1-\lambda \right)\left(\lambda +3\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(1-\lambda \right)\left(\lambda +3\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-\lambda ^{2}-2\lambda +3
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=-2 ab=-3=-3
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം -\lambda ^{2}+a\lambda +b\lambda +3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=1 b=-3
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(-\lambda ^{2}+\lambda \right)+\left(-3\lambda +3\right)
-\lambda ^{2}-2\lambda +3 എന്നത് \left(-\lambda ^{2}+\lambda \right)+\left(-3\lambda +3\right) എന്നായി തിരുത്തിയെഴുതുക.
\lambda \left(-\lambda +1\right)+3\left(-\lambda +1\right)
ആദ്യ ഗ്രൂപ്പിലെ \lambda എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-\lambda +1\right)\left(\lambda +3\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -\lambda +1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
-\lambda ^{2}-2\lambda +3=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
\lambda =\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
\lambda =\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
-2 സ്ക്വയർ ചെയ്യുക.
\lambda =\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\lambda =\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\lambda =\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
4, 12 എന്നതിൽ ചേർക്കുക.
\lambda =\frac{-\left(-2\right)±4}{2\left(-1\right)}
16 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
\lambda =\frac{2±4}{2\left(-1\right)}
-2 എന്നതിന്റെ വിപരീതം 2 ആണ്.
\lambda =\frac{2±4}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\lambda =\frac{6}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, \lambda =\frac{2±4}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 2, 4 എന്നതിൽ ചേർക്കുക.
\lambda =-3
-2 കൊണ്ട് 6 എന്നതിനെ ഹരിക്കുക.
\lambda =-\frac{2}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, \lambda =\frac{2±4}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 2 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
\lambda =1
-2 കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
-\lambda ^{2}-2\lambda +3=-\left(\lambda -\left(-3\right)\right)\left(\lambda -1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി -3 എന്നതും, x_{2}-നായി 1 എന്നതും പകരം വയ്ക്കുക.
-\lambda ^{2}-2\lambda +3=-\left(\lambda +3\right)\left(\lambda -1\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്പ്രഷനുകളും ലളിതമാക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}