മൂല്യനിർണ്ണയം ചെയ്യുക
\frac{x}{84}
x എന്നതുമായി ബന്ധപ്പെട്ട് ഡിഫറൻഷ്യേറ്റ് ചെയ്യുക
\frac{1}{84} = 0.011904761904761904
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{x}{24}\times \frac{2}{7}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{14} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{x\times 2}{24\times 7}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{x}{24}, \frac{2}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{x}{7\times 12}
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 2 ഒഴിവാക്കുക.
\frac{x}{84}
84 നേടാൻ 7, 12 എന്നിവ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{24}\times \frac{2}{7})
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{14} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 2}{24\times 7})
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{x}{24}, \frac{2}{7} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{7\times 12})
ന്യൂമറേറ്ററിലും ഭിന്നസംഖ്യാഛേദിയിലും 2 ഒഴിവാക്കുക.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{84})
84 നേടാൻ 7, 12 എന്നിവ ഗുണിക്കുക.
\frac{1}{84}x^{1-1}
ax^{n} എന്നതിന്റെ അവകലജം nax^{n-1} ആണ്.
\frac{1}{84}x^{0}
1 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
\frac{1}{84}\times 1
0, t^{0}=1 ഒഴികെ ഏതു പദത്തിനും t.
\frac{1}{84}
ഏതു പദത്തിനും t, t\times 1=t, 1t=t.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}