Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Сподели

x^{2}=x
Помножете x и x за да добиете x^{2}.
x^{2}-x=0
Одземете x од двете страни.
x\left(x-1\right)=0
Исклучување на вредноста на факторот x.
x=0 x=1
За да најдете решенија за равенката, решете ги x=0 и x-1=0.
x^{2}=x
Помножете x и x за да добиете x^{2}.
x^{2}-x=0
Одземете x од двете страни.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -1 за b и 0 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2}
Вадење квадратен корен од 1.
x=\frac{1±1}{2}
Спротивно на -1 е 1.
x=\frac{2}{2}
Сега решете ја равенката x=\frac{1±1}{2} кога ± ќе биде плус. Собирање на 1 и 1.
x=1
Делење на 2 со 2.
x=\frac{0}{2}
Сега решете ја равенката x=\frac{1±1}{2} кога ± ќе биде минус. Одземање на 1 од 1.
x=0
Делење на 0 со 2.
x=1 x=0
Равенката сега е решена.
x^{2}=x
Помножете x и x за да добиете x^{2}.
x^{2}-x=0
Одземете x од двете страни.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Поделете го -1, коефициентот на членот x, со 2 за да добиете -\frac{1}{2}. Потоа додајте го квадратот од -\frac{1}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Кренете -\frac{1}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Фактор x^{2}-x+\frac{1}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Извадете квадратен корен од двете страни на равенката.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Поедноставување.
x=1 x=0
Додавање на \frac{1}{2} на двете страни на равенката.