Реши за x
x=-1
x=4
Графика
Сподели
Копирани во клипбордот
xx-4=3x
Променливата x не може да биде еднаква на 0 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x.
x^{2}-4=3x
Помножете x и x за да добиете x^{2}.
x^{2}-4-3x=0
Одземете 3x од двете страни.
x^{2}-3x-4=0
Прераспоредете го полиномот за да го ставите во стандардна форма. Распоредете ги членовите почнувајќи од највисокиот да најнискиот степен.
a+b=-3 ab=-4
За да ја решите равенката, факторирајте x^{2}-3x-4 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
1,-4 2,-2
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -4.
1-4=-3 2-2=0
Пресметајте го збирот за секој пар.
a=-4 b=1
Решението е парот што дава збир -3.
\left(x-4\right)\left(x+1\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
x=4 x=-1
За да најдете решенија за равенката, решете ги x-4=0 и x+1=0.
xx-4=3x
Променливата x не може да биде еднаква на 0 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x.
x^{2}-4=3x
Помножете x и x за да добиете x^{2}.
x^{2}-4-3x=0
Одземете 3x од двете страни.
x^{2}-3x-4=0
Прераспоредете го полиномот за да го ставите во стандардна форма. Распоредете ги членовите почнувајќи од највисокиот да најнискиот степен.
a+b=-3 ab=1\left(-4\right)=-4
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx-4. За да ги најдете a и b, поставете систем за решавање.
1,-4 2,-2
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -4.
1-4=-3 2-2=0
Пресметајте го збирот за секој пар.
a=-4 b=1
Решението е парот што дава збир -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Препиши го x^{2}-3x-4 како \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Факторирај го x во x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Факторирај го заедничкиот термин x-4 со помош на дистрибутивно својство.
x=4 x=-1
За да најдете решенија за равенката, решете ги x-4=0 и x+1=0.
xx-4=3x
Променливата x не може да биде еднаква на 0 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x.
x^{2}-4=3x
Помножете x и x за да добиете x^{2}.
x^{2}-4-3x=0
Одземете 3x од двете страни.
x^{2}-3x-4=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -3 за b и -4 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Квадрат од -3.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Множење на -4 со -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
Собирање на 9 и 16.
x=\frac{-\left(-3\right)±5}{2}
Вадење квадратен корен од 25.
x=\frac{3±5}{2}
Спротивно на -3 е 3.
x=\frac{8}{2}
Сега решете ја равенката x=\frac{3±5}{2} кога ± ќе биде плус. Собирање на 3 и 5.
x=4
Делење на 8 со 2.
x=-\frac{2}{2}
Сега решете ја равенката x=\frac{3±5}{2} кога ± ќе биде минус. Одземање на 5 од 3.
x=-1
Делење на -2 со 2.
x=4 x=-1
Равенката сега е решена.
xx-4=3x
Променливата x не може да биде еднаква на 0 бидејќи делењето со нула не е дефинирано. Помножете ги двете страни на равенката со x.
x^{2}-4=3x
Помножете x и x за да добиете x^{2}.
x^{2}-4-3x=0
Одземете 3x од двете страни.
x^{2}-3x=4
Додај 4 на двете страни. Секој број собран со нула го дава истиот број.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Поделете го -3, коефициентот на членот x, со 2 за да добиете -\frac{3}{2}. Потоа додајте го квадратот од -\frac{3}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Кренете -\frac{3}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Собирање на 4 и \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Фактор x^{2}-3x+\frac{9}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Извадете квадратен корен од двете страни на равенката.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Поедноставување.
x=4 x=-1
Додавање на \frac{3}{2} на двете страни на равенката.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}