Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\left(x+5\right)\left(x^{2}-6x+8\right)
Според теоремата за рационален корен, сите рационални корени од полиномот се во форма \frac{p}{q}, каде p го дели константниот термин 40, а q го дели главниот коефициент 1. Еден таков корен е -5. Извршете факторизација на полиномот така што ќе го поделите со x+5.
a+b=-6 ab=1\times 8=8
Запомнете, x^{2}-6x+8. Факторирајте го изразот со групирање. Прво, изразот треба да се препише како x^{2}+ax+bx+8. За да ги најдете a и b, поставете систем за решавање.
-1,-8 -2,-4
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 8.
-1-8=-9 -2-4=-6
Пресметајте го збирот за секој пар.
a=-4 b=-2
Решението е парот што дава збир -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Препиши го x^{2}-6x+8 како \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Исклучете го факторот x во првата група и -2 во втората група.
\left(x-4\right)\left(x-2\right)
Факторирај го заедничкиот термин x-4 со помош на дистрибутивно својство.
\left(x-4\right)\left(x-2\right)\left(x+5\right)
Препишете го целиот факториран израз.