Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

\left(x-10\right)\left(x^{2}-5x+6\right)
Според теоремата за рационален корен, сите рационални корени од полиномот се во форма \frac{p}{q}, каде p го дели константниот термин -60, а q го дели главниот коефициент 1. Еден таков корен е 10. Извршете факторизација на полиномот така што ќе го поделите со x-10.
a+b=-5 ab=1\times 6=6
Запомнете, x^{2}-5x+6. Факторирајте го изразот со групирање. Прво, изразот треба да се препише како x^{2}+ax+bx+6. За да ги најдете a и b, поставете систем за решавање.
-1,-6 -2,-3
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 6.
-1-6=-7 -2-3=-5
Пресметајте го збирот за секој пар.
a=-3 b=-2
Решението е парот што дава збир -5.
\left(x^{2}-3x\right)+\left(-2x+6\right)
Препиши го x^{2}-5x+6 како \left(x^{2}-3x\right)+\left(-2x+6\right).
x\left(x-3\right)-2\left(x-3\right)
Исклучете го факторот x во првата група и -2 во втората група.
\left(x-3\right)\left(x-2\right)
Факторирај го заедничкиот термин x-3 со помош на дистрибутивно својство.
\left(x-10\right)\left(x-3\right)\left(x-2\right)
Препишете го целиот факториран израз.