Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=-8 ab=15
За да ја решите равенката, факторирајте x^{2}-8x+15 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
-1,-15 -3,-5
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 15.
-1-15=-16 -3-5=-8
Пресметајте го збирот за секој пар.
a=-5 b=-3
Решението е парот што дава збир -8.
\left(x-5\right)\left(x-3\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
x=5 x=3
За да најдете решенија за равенката, решете ги x-5=0 и x-3=0.
a+b=-8 ab=1\times 15=15
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx+15. За да ги најдете a и b, поставете систем за решавање.
-1,-15 -3,-5
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 15.
-1-15=-16 -3-5=-8
Пресметајте го збирот за секој пар.
a=-5 b=-3
Решението е парот што дава збир -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Препиши го x^{2}-8x+15 како \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
Исклучете го факторот x во првата група и -3 во втората група.
\left(x-5\right)\left(x-3\right)
Факторирај го заедничкиот термин x-5 со помош на дистрибутивно својство.
x=5 x=3
За да најдете решенија за равенката, решете ги x-5=0 и x-3=0.
x^{2}-8x+15=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -8 за b и 15 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Квадрат од -8.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Множење на -4 со 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
Собирање на 64 и -60.
x=\frac{-\left(-8\right)±2}{2}
Вадење квадратен корен од 4.
x=\frac{8±2}{2}
Спротивно на -8 е 8.
x=\frac{10}{2}
Сега решете ја равенката x=\frac{8±2}{2} кога ± ќе биде плус. Собирање на 8 и 2.
x=5
Делење на 10 со 2.
x=\frac{6}{2}
Сега решете ја равенката x=\frac{8±2}{2} кога ± ќе биде минус. Одземање на 2 од 8.
x=3
Делење на 6 со 2.
x=5 x=3
Равенката сега е решена.
x^{2}-8x+15=0
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
x^{2}-8x+15-15=-15
Одземање на 15 од двете страни на равенката.
x^{2}-8x=-15
Ако одземете 15 од истиот број, ќе остане 0.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Поделете го -8, коефициентот на членот x, со 2 за да добиете -4. Потоа додајте го квадратот од -4 на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-8x+16=-15+16
Квадрат од -4.
x^{2}-8x+16=1
Собирање на -15 и 16.
\left(x-4\right)^{2}=1
Фактор x^{2}-8x+16. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Извадете квадратен корен од двете страни на равенката.
x-4=1 x-4=-1
Поедноставување.
x=5 x=3
Додавање на 4 на двете страни на равенката.