Реши за x
x = \frac{\sqrt{145} + 5}{2} \approx 8,520797289
x=\frac{5-\sqrt{145}}{2}\approx -3,520797289
Графика
Сподели
Копирани во клипбордот
x^{2}-5x-30=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-30\right)}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -5 за b и -30 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-30\right)}}{2}
Квадрат од -5.
x=\frac{-\left(-5\right)±\sqrt{25+120}}{2}
Множење на -4 со -30.
x=\frac{-\left(-5\right)±\sqrt{145}}{2}
Собирање на 25 и 120.
x=\frac{5±\sqrt{145}}{2}
Спротивно на -5 е 5.
x=\frac{\sqrt{145}+5}{2}
Сега решете ја равенката x=\frac{5±\sqrt{145}}{2} кога ± ќе биде плус. Собирање на 5 и \sqrt{145}.
x=\frac{5-\sqrt{145}}{2}
Сега решете ја равенката x=\frac{5±\sqrt{145}}{2} кога ± ќе биде минус. Одземање на \sqrt{145} од 5.
x=\frac{\sqrt{145}+5}{2} x=\frac{5-\sqrt{145}}{2}
Равенката сега е решена.
x^{2}-5x-30=0
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
x^{2}-5x-30-\left(-30\right)=-\left(-30\right)
Додавање на 30 на двете страни на равенката.
x^{2}-5x=-\left(-30\right)
Ако одземете -30 од истиот број, ќе остане 0.
x^{2}-5x=30
Одземање на -30 од 0.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=30+\left(-\frac{5}{2}\right)^{2}
Поделете го -5, коефициентот на членот x, со 2 за да добиете -\frac{5}{2}. Потоа додајте го квадратот од -\frac{5}{2} на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-5x+\frac{25}{4}=30+\frac{25}{4}
Кренете -\frac{5}{2} на квадрат со кревање и на броителот и на именителот на дропката на квадрат.
x^{2}-5x+\frac{25}{4}=\frac{145}{4}
Собирање на 30 и \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{145}{4}
Фактор x^{2}-5x+\frac{25}{4}. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Извадете квадратен корен од двете страни на равенката.
x-\frac{5}{2}=\frac{\sqrt{145}}{2} x-\frac{5}{2}=-\frac{\sqrt{145}}{2}
Поедноставување.
x=\frac{\sqrt{145}+5}{2} x=\frac{5-\sqrt{145}}{2}
Додавање на \frac{5}{2} на двете страни на равенката.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}