Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=-4 ab=-32
За да ја решите равенката, факторирајте x^{2}-4x-32 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
1,-32 2,-16 4,-8
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -32.
1-32=-31 2-16=-14 4-8=-4
Пресметајте го збирот за секој пар.
a=-8 b=4
Решението е парот што дава збир -4.
\left(x-8\right)\left(x+4\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
x=8 x=-4
За да најдете решенија за равенката, решете ги x-8=0 и x+4=0.
a+b=-4 ab=1\left(-32\right)=-32
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx-32. За да ги најдете a и b, поставете систем за решавање.
1,-32 2,-16 4,-8
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -32.
1-32=-31 2-16=-14 4-8=-4
Пресметајте го збирот за секој пар.
a=-8 b=4
Решението е парот што дава збир -4.
\left(x^{2}-8x\right)+\left(4x-32\right)
Препиши го x^{2}-4x-32 како \left(x^{2}-8x\right)+\left(4x-32\right).
x\left(x-8\right)+4\left(x-8\right)
Исклучете го факторот x во првата група и 4 во втората група.
\left(x-8\right)\left(x+4\right)
Факторирај го заедничкиот термин x-8 со помош на дистрибутивно својство.
x=8 x=-4
За да најдете решенија за равенката, решете ги x-8=0 и x+4=0.
x^{2}-4x-32=0
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-32\right)}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -4 за b и -32 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-32\right)}}{2}
Квадрат од -4.
x=\frac{-\left(-4\right)±\sqrt{16+128}}{2}
Множење на -4 со -32.
x=\frac{-\left(-4\right)±\sqrt{144}}{2}
Собирање на 16 и 128.
x=\frac{-\left(-4\right)±12}{2}
Вадење квадратен корен од 144.
x=\frac{4±12}{2}
Спротивно на -4 е 4.
x=\frac{16}{2}
Сега решете ја равенката x=\frac{4±12}{2} кога ± ќе биде плус. Собирање на 4 и 12.
x=8
Делење на 16 со 2.
x=-\frac{8}{2}
Сега решете ја равенката x=\frac{4±12}{2} кога ± ќе биде минус. Одземање на 12 од 4.
x=-4
Делење на -8 со 2.
x=8 x=-4
Равенката сега е решена.
x^{2}-4x-32=0
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
x^{2}-4x-32-\left(-32\right)=-\left(-32\right)
Додавање на 32 на двете страни на равенката.
x^{2}-4x=-\left(-32\right)
Ако одземете -32 од истиот број, ќе остане 0.
x^{2}-4x=32
Одземање на -32 од 0.
x^{2}-4x+\left(-2\right)^{2}=32+\left(-2\right)^{2}
Поделете го -4, коефициентот на членот x, со 2 за да добиете -2. Потоа додајте го квадратот од -2 на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-4x+4=32+4
Квадрат од -2.
x^{2}-4x+4=36
Собирање на 32 и 4.
\left(x-2\right)^{2}=36
Фактор x^{2}-4x+4. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{36}
Извадете квадратен корен од двете страни на равенката.
x-2=6 x-2=-6
Поедноставување.
x=8 x=-4
Додавање на 2 на двете страни на равенката.