Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

x^{2}-3x+53-3x=44
Одземете 3x од двете страни.
x^{2}-6x+53=44
Комбинирајте -3x и -3x за да добиете -6x.
x^{2}-6x+53-44=0
Одземете 44 од двете страни.
x^{2}-6x+9=0
Одземете 44 од 53 за да добиете 9.
a+b=-6 ab=9
За да ја решите равенката, факторирајте x^{2}-6x+9 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
-1,-9 -3,-3
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 9.
-1-9=-10 -3-3=-6
Пресметајте го збирот за секој пар.
a=-3 b=-3
Решението е парот што дава збир -6.
\left(x-3\right)\left(x-3\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
\left(x-3\right)^{2}
Препишување како биномен квадрат.
x=3
За да најдете решение за равенката, решете ја x-3=0.
x^{2}-3x+53-3x=44
Одземете 3x од двете страни.
x^{2}-6x+53=44
Комбинирајте -3x и -3x за да добиете -6x.
x^{2}-6x+53-44=0
Одземете 44 од двете страни.
x^{2}-6x+9=0
Одземете 44 од 53 за да добиете 9.
a+b=-6 ab=1\times 9=9
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx+9. За да ги најдете a и b, поставете систем за решавање.
-1,-9 -3,-3
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 9.
-1-9=-10 -3-3=-6
Пресметајте го збирот за секој пар.
a=-3 b=-3
Решението е парот што дава збир -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Препиши го x^{2}-6x+9 како \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Исклучете го факторот x во првата група и -3 во втората група.
\left(x-3\right)\left(x-3\right)
Факторирај го заедничкиот термин x-3 со помош на дистрибутивно својство.
\left(x-3\right)^{2}
Препишување како биномен квадрат.
x=3
За да најдете решение за равенката, решете ја x-3=0.
x^{2}-3x+53-3x=44
Одземете 3x од двете страни.
x^{2}-6x+53=44
Комбинирајте -3x и -3x за да добиете -6x.
x^{2}-6x+53-44=0
Одземете 44 од двете страни.
x^{2}-6x+9=0
Одземете 44 од 53 за да добиете 9.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, -6 за b и 9 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Квадрат од -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Множење на -4 со 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Собирање на 36 и -36.
x=-\frac{-6}{2}
Вадење квадратен корен од 0.
x=\frac{6}{2}
Спротивно на -6 е 6.
x=3
Делење на 6 со 2.
x^{2}-3x+53-3x=44
Одземете 3x од двете страни.
x^{2}-6x+53=44
Комбинирајте -3x и -3x за да добиете -6x.
x^{2}-6x=44-53
Одземете 53 од двете страни.
x^{2}-6x=-9
Одземете 53 од 44 за да добиете -9.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Поделете го -6, коефициентот на членот x, со 2 за да добиете -3. Потоа додајте го квадратот од -3 на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}-6x+9=-9+9
Квадрат од -3.
x^{2}-6x+9=0
Собирање на -9 и 9.
\left(x-3\right)^{2}=0
Фактор x^{2}-6x+9. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Извадете квадратен корен од двете страни на равенката.
x-3=0 x-3=0
Поедноставување.
x=3 x=3
Додавање на 3 на двете страни на равенката.
x=3
Равенката сега е решена. Решенијата се исти.