Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=-26 ab=1\times 169=169
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како x^{2}+ax+bx+169. За да ги најдете a и b, поставете систем за решавање.
-1,-169 -13,-13
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 169.
-1-169=-170 -13-13=-26
Пресметајте го збирот за секој пар.
a=-13 b=-13
Решението е парот што дава збир -26.
\left(x^{2}-13x\right)+\left(-13x+169\right)
Препиши го x^{2}-26x+169 како \left(x^{2}-13x\right)+\left(-13x+169\right).
x\left(x-13\right)-13\left(x-13\right)
Исклучете го факторот x во првата група и -13 во втората група.
\left(x-13\right)\left(x-13\right)
Факторирај го заедничкиот термин x-13 со помош на дистрибутивно својство.
\left(x-13\right)^{2}
Препишување како биномен квадрат.
factor(x^{2}-26x+169)
Триномот има форма на триномен квадрат најверојатно помножен со заеднички фактор. Триномните квадрати може да се факторираат со наоѓање на квадратните корени од почетните и крајните членови.
\sqrt{169}=13
Најдете квадратен корен од крајниот член, 169.
\left(x-13\right)^{2}
Триномниот квадрат е квадрат на биномот што претставува збир или разлика од квадратните корени на почетните и крајните членови, а знакот е одреден со знакот на средниот член од триномниот квадрат.
x^{2}-26x+169=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 169}}{2}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 169}}{2}
Квадрат од -26.
x=\frac{-\left(-26\right)±\sqrt{676-676}}{2}
Множење на -4 со 169.
x=\frac{-\left(-26\right)±\sqrt{0}}{2}
Собирање на 676 и -676.
x=\frac{-\left(-26\right)±0}{2}
Вадење квадратен корен од 0.
x=\frac{26±0}{2}
Спротивно на -26 е 26.
x^{2}-26x+169=\left(x-13\right)\left(x-13\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го 13 со x_{1} и 13 со x_{2}.