Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

a+b=-17 ab=1\left(-60\right)=-60
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како x^{2}+ax+bx-60. За да ги најдете a и b, поставете систем за решавање.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Пресметајте го збирот за секој пар.
a=-20 b=3
Решението е парот што дава збир -17.
\left(x^{2}-20x\right)+\left(3x-60\right)
Препиши го x^{2}-17x-60 како \left(x^{2}-20x\right)+\left(3x-60\right).
x\left(x-20\right)+3\left(x-20\right)
Исклучете го факторот x во првата група и 3 во втората група.
\left(x-20\right)\left(x+3\right)
Факторирај го заедничкиот термин x-20 со помош на дистрибутивно својство.
x^{2}-17x-60=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\left(-60\right)}}{2}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x=\frac{-\left(-17\right)±\sqrt{289-4\left(-60\right)}}{2}
Квадрат од -17.
x=\frac{-\left(-17\right)±\sqrt{289+240}}{2}
Множење на -4 со -60.
x=\frac{-\left(-17\right)±\sqrt{529}}{2}
Собирање на 289 и 240.
x=\frac{-\left(-17\right)±23}{2}
Вадење квадратен корен од 529.
x=\frac{17±23}{2}
Спротивно на -17 е 17.
x=\frac{40}{2}
Сега решете ја равенката x=\frac{17±23}{2} кога ± ќе биде плус. Собирање на 17 и 23.
x=20
Делење на 40 со 2.
x=-\frac{6}{2}
Сега решете ја равенката x=\frac{17±23}{2} кога ± ќе биде минус. Одземање на 23 од 17.
x=-3
Делење на -6 со 2.
x^{2}-17x-60=\left(x-20\right)\left(x-\left(-3\right)\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го 20 со x_{1} и -3 со x_{2}.
x^{2}-17x-60=\left(x-20\right)\left(x+3\right)
Поедноставете ги сите изрази на формуларот p-\left(-q\right) со p+q.