Реши за n
n=\frac{\sqrt{3}\left(x^{2}-1\right)}{3}
Реши за x (complex solution)
x=-\sqrt{\sqrt{3}n+1}
x=\sqrt{\sqrt{3}n+1}
Реши за x
x=\sqrt{\sqrt{3}n+1}
x=-\sqrt{\sqrt{3}n+1}\text{, }n\geq -\frac{\sqrt{3}}{3}
Графика
Сподели
Копирани во клипбордот
-\sqrt{3}n=1-x^{2}
Одземете x^{2} од двете страни.
\left(-\sqrt{3}\right)n=1-x^{2}
Равенката е во стандардна форма.
\frac{\left(-\sqrt{3}\right)n}{-\sqrt{3}}=\frac{1-x^{2}}{-\sqrt{3}}
Поделете ги двете страни со -\sqrt{3}.
n=\frac{1-x^{2}}{-\sqrt{3}}
Ако поделите со -\sqrt{3}, ќе се врати множењето со -\sqrt{3}.
n=-\frac{\sqrt{3}\left(1-x^{2}\right)}{3}
Делење на -x^{2}+1 со -\sqrt{3}.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}