Прескокни до главната содржина
Реши за x
Tick mark Image
Графика

Слични проблеми од Web Search

Сподели

x^{2}+2x-48=0
Одземете 48 од двете страни.
a+b=2 ab=-48
За да ја решите равенката, факторирајте x^{2}+2x-48 со помош на формулата x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да ги најдете a и b, поставете систем за решавање.
-1,48 -2,24 -3,16 -4,12 -6,8
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е позитивно, позитивниот број има поголема апсолутна вредност од негативниот. Наведете ги сите парови цели броеви што даваат производ -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Пресметајте го збирот за секој пар.
a=-6 b=8
Решението е парот што дава збир 2.
\left(x-6\right)\left(x+8\right)
Препишете го факторираниот израз \left(x+a\right)\left(x+b\right) со помош на добиените вредности.
x=6 x=-8
За да најдете решенија за равенката, решете ги x-6=0 и x+8=0.
x^{2}+2x-48=0
Одземете 48 од двете страни.
a+b=2 ab=1\left(-48\right)=-48
За да ја решите равенката, факторирајте ја левата страна со групирање. Прво, левата страна треба да се препише како x^{2}+ax+bx-48. За да ги најдете a и b, поставете систем за решавање.
-1,48 -2,24 -3,16 -4,12 -6,8
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е позитивно, позитивниот број има поголема апсолутна вредност од негативниот. Наведете ги сите парови цели броеви што даваат производ -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Пресметајте го збирот за секој пар.
a=-6 b=8
Решението е парот што дава збир 2.
\left(x^{2}-6x\right)+\left(8x-48\right)
Препиши го x^{2}+2x-48 како \left(x^{2}-6x\right)+\left(8x-48\right).
x\left(x-6\right)+8\left(x-6\right)
Исклучете го факторот x во првата група и 8 во втората група.
\left(x-6\right)\left(x+8\right)
Факторирај го заедничкиот термин x-6 со помош на дистрибутивно својство.
x=6 x=-8
За да најдете решенија за равенката, решете ги x-6=0 и x+8=0.
x^{2}+2x=48
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
x^{2}+2x-48=48-48
Одземање на 48 од двете страни на равенката.
x^{2}+2x-48=0
Ако одземете 48 од истиот број, ќе остане 0.
x=\frac{-2±\sqrt{2^{2}-4\left(-48\right)}}{2}
Оваа равенка е во стандардна форма: ax^{2}+bx+c=0. Ставете 1 за a, 2 за b и -48 за c во формулата за квадратна равенка \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-48\right)}}{2}
Квадрат од 2.
x=\frac{-2±\sqrt{4+192}}{2}
Множење на -4 со -48.
x=\frac{-2±\sqrt{196}}{2}
Собирање на 4 и 192.
x=\frac{-2±14}{2}
Вадење квадратен корен од 196.
x=\frac{12}{2}
Сега решете ја равенката x=\frac{-2±14}{2} кога ± ќе биде плус. Собирање на -2 и 14.
x=6
Делење на 12 со 2.
x=-\frac{16}{2}
Сега решете ја равенката x=\frac{-2±14}{2} кога ± ќе биде минус. Одземање на 14 од -2.
x=-8
Делење на -16 со 2.
x=6 x=-8
Равенката сега е решена.
x^{2}+2x=48
Квадратните равенки како оваа може да се решат со пополнување на квадратот. За да го пополните, равенката прво мора да биде во формата x^{2}+bx=c.
x^{2}+2x+1^{2}=48+1^{2}
Поделете го 2, коефициентот на членот x, со 2 за да добиете 1. Потоа додајте го квадратот од 1 на двете страни од равенката. Овој чекор ќе ја направи левата страна на равенката совршен квадрат.
x^{2}+2x+1=48+1
Квадрат од 1.
x^{2}+2x+1=49
Собирање на 48 и 1.
\left(x+1\right)^{2}=49
Фактор x^{2}+2x+1. Генерално, кога x^{2}+bx+c е совршен квадрат, може секогаш да се факторира како \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{49}
Извадете квадратен корен од двете страни на равенката.
x+1=7 x+1=-7
Поедноставување.
x=6 x=-8
Одземање на 1 од двете страни на равенката.