Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image

Слични проблеми од Web Search

Сподели

a+b=-10 ab=1\times 25=25
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како r^{2}+ar+br+25. За да ги најдете a и b, поставете систем за решавање.
-1,-25 -5,-5
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е негативно, и a и b се негативни. Наведете ги сите парови цели броеви што даваат производ 25.
-1-25=-26 -5-5=-10
Пресметајте го збирот за секој пар.
a=-5 b=-5
Решението е парот што дава збир -10.
\left(r^{2}-5r\right)+\left(-5r+25\right)
Препиши го r^{2}-10r+25 како \left(r^{2}-5r\right)+\left(-5r+25\right).
r\left(r-5\right)-5\left(r-5\right)
Исклучете го факторот r во првата група и -5 во втората група.
\left(r-5\right)\left(r-5\right)
Факторирај го заедничкиот термин r-5 со помош на дистрибутивно својство.
\left(r-5\right)^{2}
Препишување како биномен квадрат.
factor(r^{2}-10r+25)
Триномот има форма на триномен квадрат најверојатно помножен со заеднички фактор. Триномните квадрати може да се факторираат со наоѓање на квадратните корени од почетните и крајните членови.
\sqrt{25}=5
Најдете квадратен корен од крајниот член, 25.
\left(r-5\right)^{2}
Триномниот квадрат е квадрат на биномот што претставува збир или разлика од квадратните корени на почетните и крајните членови, а знакот е одреден со знакот на средниот член од триномниот квадрат.
r^{2}-10r+25=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
r=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
r=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Квадрат од -10.
r=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Множење на -4 со 25.
r=\frac{-\left(-10\right)±\sqrt{0}}{2}
Собирање на 100 и -100.
r=\frac{-\left(-10\right)±0}{2}
Вадење квадратен корен од 0.
r=\frac{10±0}{2}
Спротивно на -10 е 10.
r^{2}-10r+25=\left(r-5\right)\left(r-5\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го 5 со x_{1} и 5 со x_{2}.