Реши за p (complex solution)
\left\{\begin{matrix}p=\frac{q+r}{x^{2}}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&q=-r\text{ and }x=0\end{matrix}\right,
Реши за p
\left\{\begin{matrix}p=\frac{q+r}{x^{2}}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&q=-r\text{ and }x=0\end{matrix}\right,
Реши за q
q=px^{2}-r
Сподели
Копирани во клипбордот
px^{2}=r+q
Додај q на двете страни.
x^{2}p=q+r
Равенката е во стандардна форма.
\frac{x^{2}p}{x^{2}}=\frac{q+r}{x^{2}}
Поделете ги двете страни со x^{2}.
p=\frac{q+r}{x^{2}}
Ако поделите со x^{2}, ќе се врати множењето со x^{2}.
px^{2}=r+q
Додај q на двете страни.
x^{2}p=q+r
Равенката е во стандардна форма.
\frac{x^{2}p}{x^{2}}=\frac{q+r}{x^{2}}
Поделете ги двете страни со x^{2}.
p=\frac{q+r}{x^{2}}
Ако поделите со x^{2}, ќе се врати множењето со x^{2}.
-q=r-px^{2}
Одземете px^{2} од двете страни.
\frac{-q}{-1}=\frac{r-px^{2}}{-1}
Поделете ги двете страни со -1.
q=\frac{r-px^{2}}{-1}
Ако поделите со -1, ќе се врати множењето со -1.
q=px^{2}-r
Делење на -px^{2}+r со -1.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}