Фактор
\left(p-12\right)\left(p+4\right)
Процени
\left(p-12\right)\left(p+4\right)
Сподели
Копирани во клипбордот
a+b=-8 ab=1\left(-48\right)=-48
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како p^{2}+ap+bp-48. За да ги најдете a и b, поставете систем за решавање.
1,-48 2,-24 3,-16 4,-12 6,-8
Бидејќи ab е негативно, a и b имаат спротивни знаци. Бидејќи a+b е негативно, негативниот број има поголема апсолутна вредност од позитивниот. Наведете ги сите парови цели броеви што даваат производ -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Пресметајте го збирот за секој пар.
a=-12 b=4
Решението е парот што дава збир -8.
\left(p^{2}-12p\right)+\left(4p-48\right)
Препиши го p^{2}-8p-48 како \left(p^{2}-12p\right)+\left(4p-48\right).
p\left(p-12\right)+4\left(p-12\right)
Исклучете го факторот p во првата група и 4 во втората група.
\left(p-12\right)\left(p+4\right)
Факторирај го заедничкиот термин p-12 со помош на дистрибутивно својство.
p^{2}-8p-48=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
p=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-48\right)}}{2}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
p=\frac{-\left(-8\right)±\sqrt{64-4\left(-48\right)}}{2}
Квадрат од -8.
p=\frac{-\left(-8\right)±\sqrt{64+192}}{2}
Множење на -4 со -48.
p=\frac{-\left(-8\right)±\sqrt{256}}{2}
Собирање на 64 и 192.
p=\frac{-\left(-8\right)±16}{2}
Вадење квадратен корен од 256.
p=\frac{8±16}{2}
Спротивно на -8 е 8.
p=\frac{24}{2}
Сега решете ја равенката p=\frac{8±16}{2} кога ± ќе биде плус. Собирање на 8 и 16.
p=12
Делење на 24 со 2.
p=-\frac{8}{2}
Сега решете ја равенката p=\frac{8±16}{2} кога ± ќе биде минус. Одземање на 16 од 8.
p=-4
Делење на -8 со 2.
p^{2}-8p-48=\left(p-12\right)\left(p-\left(-4\right)\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го 12 со x_{1} и -4 со x_{2}.
p^{2}-8p-48=\left(p-12\right)\left(p+4\right)
Поедноставете ги сите изрази на формуларот p-\left(-q\right) со p+q.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}