Фактор
\left(k+1\right)\left(k+4\right)
Процени
\left(k+1\right)\left(k+4\right)
Сподели
Копирани во клипбордот
a+b=5 ab=1\times 4=4
Факторирајте го изразот со групирање. Прво, изразот треба да се препише како k^{2}+ak+bk+4. За да ги најдете a и b, поставете систем за решавање.
1,4 2,2
Бидејќи ab е позитивно, a и b го имаат истиот знак. Бидејќи a+b е позитивно, и a и b се позитивни. Наведете ги сите парови цели броеви што даваат производ 4.
1+4=5 2+2=4
Пресметајте го збирот за секој пар.
a=1 b=4
Решението е парот што дава збир 5.
\left(k^{2}+k\right)+\left(4k+4\right)
Препиши го k^{2}+5k+4 како \left(k^{2}+k\right)+\left(4k+4\right).
k\left(k+1\right)+4\left(k+1\right)
Исклучете го факторот k во првата група и 4 во втората група.
\left(k+1\right)\left(k+4\right)
Факторирај го заедничкиот термин k+1 со помош на дистрибутивно својство.
k^{2}+5k+4=0
Квадратниот полином може да се факторира со помош на трансформацијата ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), каде што x_{1} и x_{2} се решенијата на квадратната равенка ax^{2}+bx+c=0.
k=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
Сите равенки што ја имаат формата ax^{2}+bx+c=0 може да се решат со формулата за квадратна равенка: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за квадратна равенка дава две решенија, едно кога ± е собирање, а друго кога е одземање.
k=\frac{-5±\sqrt{25-4\times 4}}{2}
Квадрат од 5.
k=\frac{-5±\sqrt{25-16}}{2}
Множење на -4 со 4.
k=\frac{-5±\sqrt{9}}{2}
Собирање на 25 и -16.
k=\frac{-5±3}{2}
Вадење квадратен корен од 9.
k=-\frac{2}{2}
Сега решете ја равенката k=\frac{-5±3}{2} кога ± ќе биде плус. Собирање на -5 и 3.
k=-1
Делење на -2 со 2.
k=-\frac{8}{2}
Сега решете ја равенката k=\frac{-5±3}{2} кога ± ќе биде минус. Одземање на 3 од -5.
k=-4
Делење на -8 со 2.
k^{2}+5k+4=\left(k-\left(-1\right)\right)\left(k-\left(-4\right)\right)
Факторирајте го оригиналниот израз со помош на ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заменете го -1 со x_{1} и -4 со x_{2}.
k^{2}+5k+4=\left(k+1\right)\left(k+4\right)
Поедноставете ги сите изрази на формуларот p-\left(-q\right) со p+q.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}