Прескокни до главната содржина
Фактор
Tick mark Image
Процени
Tick mark Image

Слични проблеми од Web Search

Сподели

\left(k^{45}+1\right)\left(k^{90}-k^{45}+1\right)
Препиши го k^{135}+1 како \left(k^{45}\right)^{3}+1^{3}. Збирот на кубовите може да се факторира со помош на правилото: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{15}+1\right)\left(k^{30}-k^{15}+1\right)
Запомнете, k^{45}+1. Препиши го k^{45}+1 како \left(k^{15}\right)^{3}+1^{3}. Збирот на кубовите може да се факторира со помош на правилото: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{5}+1\right)\left(k^{10}-k^{5}+1\right)
Запомнете, k^{15}+1. Препиши го k^{15}+1 како \left(k^{5}\right)^{3}+1^{3}. Збирот на кубовите може да се факторира со помош на правилото: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)
Запомнете, k^{5}+1. Според теоремата за рационален корен, сите рационални корени од полиномот се во форма \frac{p}{q}, каде p го дели константниот термин 1, а q го дели главниот коефициент 1. Еден таков корен е -1. Извршете факторизација на полиномот така што ќе го поделите со k+1.
\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
Препишете го целиот факториран израз. Следниве полиноми не се факторирани бидејќи немаат рационални корени: k^{4}-k^{3}+k^{2}-k+1,k^{10}-k^{5}+1,k^{30}-k^{15}+1,k^{90}-k^{45}+1.