Фактор
a\left(x-2\right)\left(x+6\right)
Процени
a\left(x-2\right)\left(x+6\right)
Графика
Сподели
Копирани во клипбордот
a\left(x^{2}+4x-12\right)
Исклучување на вредноста на факторот a.
p+q=4 pq=1\left(-12\right)=-12
Запомнете, x^{2}+4x-12. Факторирајте го изразот со групирање. Прво, изразот треба да се препише како x^{2}+px+qx-12. За да ги најдете p и q, поставете систем за решавање.
-1,12 -2,6 -3,4
Бидејќи pq е негативно, p и q имаат спротивни знаци. Бидејќи p+q е позитивно, позитивниот број има поголема апсолутна вредност од негативниот. Наведете ги сите парови цели броеви што даваат производ -12.
-1+12=11 -2+6=4 -3+4=1
Пресметајте го збирот за секој пар.
p=-2 q=6
Решението е парот што дава збир 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Препиши го x^{2}+4x-12 како \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Исклучете го факторот x во првата група и 6 во втората група.
\left(x-2\right)\left(x+6\right)
Факторирај го заедничкиот термин x-2 со помош на дистрибутивно својство.
a\left(x-2\right)\left(x+6\right)
Препишете го целиот факториран израз.
Примери
Квадратична равенка
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрија
4 \sin \theta \cos \theta = 2 \sin \theta
Линеарна равенка
y = 3x + 4
Аритметика
699 * 533
Матрица.
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Симултана равенка
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференцијација
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграција
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ограничувања
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}